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Abstract  
Various palaeoclimate reconstructions have identified the occurrence of ‘megadroughts’. 

These ‘megadroughts’ are much longer and more severe than those recorded via the 

instrumental measurements. Because instrumental measurements are used to infer climate risk 

when designing water supply infrastructure and management plans, a ‘megadrought’ invokes 

a concern for water security. However, such concerns should be viewed within the context of 

the (a) limitations of using palaeoclimate proxy records as a source of climate information and 

(b) existing methods used in water management to estimate climate risk (i.e. inferring climate 

risk using a stochastic model calibrated to instrumental measurements).   

 

The goal of this thesis is to (a) use palaeoclimate proxy records to evaluate stochastic model 

performance and parameter stationarity under long-term, centennial-scale variability and (b) 

present a stochastic modelling framework that incorporates proxy centennial-scale variability. 

 

To achieve this goal, this thesis had five objectives: 

1. Evaluate the persistence signal in Antarctic ice core records.  

It was found that the persistence signal in annual snowfall accumulation and mid-latitude 

rainfall records are statistically similar. In contrast, ice core Na+ records tended to have slightly 

higher persistence than mid-latitude rainfall. This analysis informed the subsequent use of ice 

core information in palaeoclimate-informed stochastic modelling and climate risk assessment. 

 

2. Evaluate different stochastic models using millennium-length palaeoclimate proxy 

records. 

It was found that a stochastic model calibrated to instrumental measurements cannot simulate 

long-term, centennial-scale climate variability. This means that traditional stochastic modelling 

approaches (i.e. calibrating to a ~100-year instrumental record) are unable to simulate risk 

arising from aleatory uncertainty and centennial-scale climate variability. However, several 

models capable of simulating long-term, centennial-scale climate variability when calibrated 

to extended, multi-centennial timeseries were identified. Two such models, the ARMA(1,1) 

and ARFIMA(0,D,0) models, were used for subsequent objectives.  

 

3. Evaluate the role of sampling bias, conditioning error, and likelihood approximation 

when inferring stochastic model parameters under centennial-scale variability. 



4 
 

Using synthetic timeseries (generated from an ARMA(1,1) or ARFIMA(0,D,0) model) and 

Bayesian calibration methods, it was found that exact and conditional, approximate 

likelihoods return similar posteriors.  

  

4. Evaluate stochastic model parameter stationarity using millennium-length 

palaeoclimate proxy records. 

It was found that stochastic model mean and standard deviation are likely (a) non-stationary at 

multi-centennial and millennial timescales and (b) stationary at centennial timescales. 

Furthermore, stochastic model persistence is likely stationary over centennial, 

multi-centennial, and millennial timescales 

 

5. Calibrate stochastic model persistence using ice core information within a Bayesian 

framework 

For the final objective, a Bayesian framework for calibrating a stochastic rainfall model using 

palaeoclimate proxy data is presented. The framework uses proxy data from an Antarctic ice 

core and instrumental measurements from southeast Australia to calibrate a catchment-scale 

stochastic rainfall model. The proxy data is used to define a Bayesian prior for instrumental 

persistence. This extracts the proxy persistence signal, which is representative of broader 

regional persistence, without using the proxy to predict catchment-scale rainfall. When 

validated, the proposed model reproduces the observed drought risk. However, compared with 

the ‘standard’ model calibrated using a non-informative persistence prior, the 

palaeoclimate-informed model can simulate much longer and more severe droughts.  

 

When answering Objectives 4 and 5, it became apparent that centennial-scale variability, 

aleatory uncertainty, and parameter uncertainty results in irreducibly ‘wide’ statistical 

uncertainty. This means that water supply systems must be robust under a future range of 

drought risk that is irreducibly ‘wide’.  

 

In the final discussion, ‘wide’ uncertainty is discussed within the context of ‘deep’ uncertainty 

associated with risk arising from anthropogenic climate change and the ‘murky’ uncertainty 

associated with imperfect knowledge, system complexity, and the subjective nature of 

socio-political values. Approaches for managing water under ‘wide, deep and murky’ 

uncertainty are also discussed.    
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Chapter 1. Introduction  
To manage water under climate variability and change, climate risk must be quantified. Climate 

risk can be viewed as a function of climate hazard (e.g. a drought), climate exposure (e.g. the 

probability of a drought occurring), and climate vulnerability (e.g. the potential impacts of a 

drought) (Kim et al., 2015).  

 

In water management, the climate hazard and climate exposure is typically quantified using a 

stochastic model calibrated to instrumental measurements(Loucks and Van Beek, 2017). These 

stochastic models generate synthetic timeseries with similar statistics to the calibration data but 

with different, and potentially more severe, droughts (Fiering, 2013). Once generated, the 

synthetic timeseries are used as inputs into a water system model (Kuczera, 1992). This 

simulates water system behaviour under the various droughts generated by the stochastic 

model, which then informs water system operation, design, and adaptation (Vogel, 2017). This 

makes stochastic model calibration a crucial task for the design and operation of water supply 

systems. 

 

When using stochastic models to infer climate risk, a key modelling assumption is one of 

parameter stationarity. (Milly et al., 2008). Parameter stationarity assumes that stochastic 

model parameters are time invariant (Koutsoyiannis and Montanari, 2015; Montanari and 

Koutsoyiannis, 2014). By assuming stationarity, there are implicit assumptions that (a) climate 

risk inferred from instrumental measurements is representative of historic risk and (b) historic 

risk is representative of future risk.   

 
To better understand the validity of these assumptions, there is a need to consider alternative, 

longer hydroclimatic timeseries. This is because short instrumental records are subject to 

considerable parameter uncertainty, making it hard to validate or invalidate the stationarity 

assumption (Serinaldi and Kilsby, 2015; Thyer et al., 2006). Furthermore, short records contain 

few multi-decadal cycles of climate variability, and no multi-centennial cycles. This means 

instrumental records are likely too short to quantify the full range of natural climate variability 

(Vance et al., 2022) and, crucially, properly evaluate a stochastic models ability to reproduce 

low-frequency variability. 

 
Palaeoclimate proxy records are a potential source of climate information that can be used to 

re-evaluate stochastic model performance and assumptions. These records are taken from 
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physical ‘layers’ with properties sensitive to climate (e.g., tree ring width being sensitive to 

available moisture), which are typically several hundred years in length (Griffin and 

Anchukaitis, 2014; Ho et al., 2015a; Verdon-Kidd et al., 2017). These records have been used 

to reconstruct pre-instrumental climate, with several studies identifying pre-instrumental 

‘megadroughts’ (Cook et al., 2022; Helama et al., 2009; Routson et al., 2011; Stevenson et al., 

2022). Naturally, a megadrought invokes a concern for water security.  

 

Megadroughts have quite severe social and economic impacts (Fernández et al., 2023; Muñoz 

et al., 2020), but adapting a water supply system to mitigate the risks posed by megadrought 

also has social and economic impacts (Gober et al., 2016). Therefore, any water security 

concerns about megadrought should be viewed with respect to the limitations and assumptions 

made when using proxy records as a source of climate information.  

 

From a water management and climate risk perspective, potential issues with proxy records 

include: 

1. Proxy data are imperfect recorders of climate information, meaning they have limited 

skill in predicting climate. This means proxy-based climate reconstructions 

underestimate instrumental-period variance (Meko et al., 2022). By extension, these 

reconstructions also underestimate the magnitudes of instrumental-period extremes 

(Patskoski et al., 2015). These statistics are crucial for any climate risk assessment.  

2. There are limited in-situ (i.e., local) proxy data for catchments of interest (Galelli et al., 

2021; Tingstad et al., 2014). This is a particularly prevalent issue across the mid-latitude 

Southern Hemisphere (Croke et al., 2021; Goodwin et al., 2022; O’Connor et al., 2022). 

3. Proxy-based statistical reconstructions assume that the proxy-climate relationship is 

stationary and can be inferred from the instrumental-period. However, numerous 

factors influence proxy formation and properties; the relative influence of these 

different factors may change between instrumental and pre-instrumental periods (Cook, 

1985; Kiem et al., 2020; Pelletier and Turcotte, 1997; Tozer et al., 2016). This means 

that the statistical model calibrated from the instrumental period may not be wholly 

suitable for some pre-instrumental periods (D’Arrigo et al., 2008).  

 

Despite the limitations of proxy records, there are physical explanations, and corresponding 

evidence from different proxy types, indicating that climate varies at centennial and millennial 

timescales. In short, megadroughts are possible (Cook et al., 2022). Therefore, there is a clear 
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need to re-evaluate and, potentially, update the statistical methods/assumptions used when 

inferring climate risk in water management using palaeoclimate (i.e. stochastic models). Doing 

so while considering the limitations of proxy records is the key motivation of this thesis. 

 

1.1 Objectives 

The goal of this thesis is to (a) use palaeoclimate proxy records to evaluate stochastic model 

performance and parameter stationarity under long-term, centennial-scale variability and (b) 

present a stochastic modelling framework that incorporates proxy centennial-scale variability. 

To achieve this goal, the thesis had five key objectives:  

 

1. Evaluate the persistence signal in Antarctic ice core records.  

In the Southern Hemisphere, Antarctic ice cores are a major source of annually-resolved 

palaeoclimate information. These records can contain persistence signals influenced by the El 

Nino Southern Oscillation and the Interdecadal Pacific Oscillation, which also influence 

hydroclimatic persistence in the mid-latitudes (Tozer et al., 2016; Vance et al., 2013). It is 

important to understand if and how ice core persistence differs from hydroclimatic persistence 

because the major population centres of the mid latitude Southern Hemisphere, such as 

southern Australia, southern South America, South Africa, experience a highly variable climate 

(Grimm et al., 2000; Mason and Jury, 1997; Verdon et al., 2004). 

 

2. Evaluate different stochastic models using millennium-length palaeoclimate proxy 

records. 

Palaeoclimatology and stochastic models have an overlapping goal: characterising climate 

variability. Palaeoclimatology pursues this goal by statistically modelling physical 

relationships between climate and climate proxies; stochastic models pursue this goal by 

statistically modelling the inherent randomness and persistence of the climate system. 

Considering the relative simplicity of stochastic models and the availability of independent 

proxy records that represent pre-instrumental climate variability, it is of interest to assess the 

ability of stochastic models to simulate pre-instrumental variability when calibrated to the 

instrumental record. It is also of interest to identify whether stochastic models can reproduce 

low-frequency climate variability captured by proxy data.  
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3. Evaluate the role of sampling bias, conditioning error, and likelihood approximation 

when inferring stochastic model parameters under centennial-scale variability. 

Quantifying stochastic model parameter uncertainty may be necessary to ensure that climate 

risk estimates derived from stochastic models, which inform water management, are reliable 

(Berghout et al., 2017; Stedinger and Taylor, 1982a). To quantify parameter uncertainty, 

Bayesian calibration methods (which require a likelihood function) are often used (Gelman et 

al., 2013). However, accurately quantifying parameter uncertainty with Bayesian methods may 

be difficult because hydrological processes can exhibit centennial-scale variability (i.e. 

long-term persistence). Instrumental rainfall and streamflow records used in stochastic model 

calibration are only ~100-years long; meaning that, with respect to centennial-scale variability, 

instrumental records have a sampling bias. Furthermore, conditional and approximate 

likelihoods are often used (for ease of computation) (Beran, 2017; Haslett and Raftery, 1989). 

Under centennial-scale variability, the errors associated with the initial conditioning and 

approximation could, potentially, bias parameter inference (Box et al., 1970).  Therefore, for 

timeseries exhibiting centennial-scale variability, it is of interest to evaluate if and how 

sampling bias, conditioning error, and likelihood approximation impacts Bayesian inference of 

stochastic models.  

 

4. Evaluate stochastic model parameter stationarity using millennium-length 

palaeoclimate proxy records. 

When using stochastic models to infer climate risk, a key modelling assumption is one of 

parameter stationarity. Parameter stationarity assumes that stochastic model parameters are 

time invariant (Koutsoyiannis and Montanari, 2015; Milly et al., 2015). However, validating 

the stationarity assumption is difficult. This is because instrumental rainfall and streamflow 

records are relatively short. Short records are subject to considerable statistical uncertainty 

(making it hard to identify clear statistical change, even under global warming) and may not 

capture long-term climate variability (Serinaldi and Kilsby, 2015; Thyer et al., 2006). 

Palaeoclimate proxy records, which span hundreds/thousands of years, can better assess 

stationarity because longer record lengths will (a) reduce statistical uncertainty; and (b) 

contextualise if any recent hydroclimatic changes are consistent with historic climate 

variability. Validating or invalidating the stationarity assumption under historic variability has 

implications for estimating drought risk and, subsequently, determining appropriate water 

management decisions and infrastructure design.  

 



24 
 

5. Calibrate stochastic model persistence using ice core information within a Bayesian 

framework 

Any palaeoclimate-informed stochastic modelling framework must preserve 

instrumental-period variance and extremes during calibration. Existing frameworks have done 

this by using proxy data to inform the resampling and/or stochastic modelling of the 

instrumental record (Erkyihun et al., 2016; Gangopadhyay et al., 2009). Although these 

methods preserve variance, the sampled wet or dry values are limited to either (a) those 

contained in instrumental data; or (b) those derived from stochastic models calibrated to wet 

or dry instrumental periods. Regarding (a), this means extrapolation to larger, unrecorded 

extremes is not possible (such extremes are possible and should be accounted for when 

quantifying drought risk). Regarding (b), given that these wet/dry periods are a subset of an 

already short instrumental record, parameter uncertainty will be substantial. Large parameter 

uncertainty will propagate through a water system model, which makes it hard to identify 

optimal management rules and infrastructure (Berghout et al., 2017; Stedinger and Taylor, 

1982a). Considering these limitations, a palaeoclimate-informed stochastic modelling 

approach that extrapolates to unobserved values while minimising parameter uncertainty is 

desirable.  

 

These objectives are primarily concerned with understanding and quantifying historic 

‘baseline’ risk. This ‘baseline’ risk can be used to contextualise future risks posed by 

anthropogenic climate change (Armstrong et al., 2020). In the final discussion, the implications 

of the thesis objectives are discussed within the context of the various sources of uncertainty 

and risk posed by anthropogenic climate change (e.g. Maier et al. (2016)) and the ‘wicked’ 

nature of water resource management (e.g. Kwakkel et al., 2016a; Wu et al., 2023) 

 

1.2 Thesis structure 

In this thesis, each chapter is organised as a stand-alone paper investigating a significant gap 

in the literature. The literature review, knowledge gaps and research significance are embedded 

within the introduction of each paper (as opposed to presenting these in a stand-alone thesis 

chapter). At the end of each paper is a section describing how the current and previous papers 

are linked with the succeeding paper. This structure was chosen as an admittedly imperfect 

trade-off between the need to produce a coherent thesis and the desire to produce potential 

journal papers.   
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Chapter 2. Evaluating hydroclimatic persistence signals 

in Antarctic ice cores  
2.1 Abstract 
Antarctic ice cores are an important source of high resolution palaeoclimate information in the 

Southern Hemisphere. More recently, Antarctic ice cores have provided opportunities to study 

long-term hydroclimatic persistence (i.e. the tendency for wet and dry years to cluster) and 

drought risk in Australia. However, due to a lack of long-term, in-situ precipitation/snowfall 

measurements, the fidelity of the ice core persistence signal is unknown. In this study, the 

persistence signal in 57 annual snowfall accumulation records and 48 ice core sodium Na+ 

records was evaluated against extended annual rainfall records from the mid-latitude Southern 

Hemisphere (23.5°S to 50°S). Hydroclimates in Antarctica and the mid-latitude Southern 

Hemisphere are both influenced by Southern Ocean synoptic systems, the Southern Annular 

Mode and the El Nino Southern Oscillation, allowing ice core persistence to be evaluated 

against mid-latitude persistence. We found the persistence signal in annual snowfall 

accumulation and mid-latitude rainfall records to be statistically similar. This indicates that 

annual snowfall accumulation persistence is not significantly biased by post-deposition 

processes (such as wind erosion and ice advection) and statistical processing after core 

collection. In contrast, ice core Na+ records tended to have slightly higher persistence than 

mid-latitude rainfall. Results from this study suggest that annual snowfall accumulation records 

can be used to characterise hydroclimatic persistence and regional drought risk. In contrast, 

before being used to characterise regional drought risk, ice core Na+ records require 

site-specific assessments that identify the constituent climate signal. These insights can guide 

future research in palaeoclimate-informed drought risk assessment and water management in 

the mid-latitude Southern Hemisphere.  
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2.2 Introduction 
Hydroclimatic persistence refers to the tendency of wet and dry years to cluster (Hurst, 1951; 

Markonis and Koutsoyiannis, 2016). There are numerous statistical methods for estimating and 

modelling persistence which are, in turn, used for estimating drought risk (Hosking, 1984; 

Thyer and Kuczera, 2000). These drought risk estimates inform how water supply systems are 

designed and managed under climate variability (Loucks and Van Beek, 2017). Calculating 

regional hydroclimatic persistence using accurate data is, therefore, crucial for successful water 

management. In this study, we evaluate the persistence signal in an alternative source of 

hydroclimatic data – palaeoclimate data from ice core records.  

 

Typically, hydroclimatic persistence is calculated using instrumental rainfall and streamflow 

records – but there remains an open question whether these records have sufficient temporal 

coverage. At best, instrumental records are ~100-150 years long in the Southern Hemisphere 

(although many regions have shorter records, Menne et al., 2012; Higgins et al., 2023). 

Calculating persistence requires long records; around 100-years is the minimum length 

(Koutsoyiannis, 2003). However, even with longer records, there is still considerable statistical 

uncertainty (Thyer et al., 2006; Weron, 2002a). This uncertainty makes it hard to identify 

optimal water system designs and management rules (Berghout et al., 2017).   

 

From a water management perspective, alternative, longer sources of hydroclimatic 

information would be useful for calculating regional persistence. One such data source is from 

palaeoclimate archives which preserve proxy climate records. These proxy records are derived 

from climatically sensitive, physical ‘layers’,  - such as tree-ring widths and ice core physical 

and chemical properties (such as snowfall accumulation rates) - which (a) can be dated and (b) 

have formed over hundreds to thousands of years (Weedon, 2003). This means that proxy 

records can extend observational records and, for hydroclimatically sensitive proxies, provide 

additional information about long-term climate variability and drought risk (Cook et al., 2015; 

Palmer et al., 2015)  

 

Although proxy records are potentially useful for studying persistence and drought risk, note 

that proxy records are imperfect recorders of climate information. Numerous processes can 

confound the climate signal of interest (Weedon, 2003) Therefore, from a climate risk 
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perspective, any study of proxy data should be prefaced by an assessment of proxy bias. In this 

study, we evaluate the persistence signal in Antarctic ice cores.  

 

This evaluation is necessary because: 

1. It is important to understand if and how proxy persistence differs from hydroclimatic 

persistence because the major population centres of the mid-latitude Southern 

Hemisphere, such as southern Australia, southern South America, South Africa, 

experience a highly variable climate (Grimm et al., 2000; Mason and Jury, 1997; 

Verdon et al., 2004).  

For these regions, the full extent of climate variability and, by extension, climate risk is hard 

to quantify using instrumental measurements (Ho et al., 2015b; Kiem et al., 2020; Mundo et 

al., 2012). To better understand the climate risks facing mid-latitude water security, 

palaeoclimate proxy information is useful (Armstrong et al., 2020; Fernández et al., 2018; 

Sauchyn et al., 2015). 

  

2. Typical climate risk assessments (e.g., evaluating water supply system performance) 

require annual/sub-annual resolution climate data (Fowler et al., 2022; Kuczera, 1992; 

Ren et al., 2023). 

Antarctic ice cores are one of the primary sources of annually-resolved palaeoclimate data in 

the Southern Hemisphere. Tree-rings, another common source of annually-resolved 

palaeoclimate data, are not  widely available near major mid-latitude Southern Hemisphere 

populations, such as east Australia and southern Africa (Dixon et al., 2017; Flack et al., 2020; 

Goodwin et al., 2022).  

 

3. Previous work evaluating proxy persistence has exclusively focussed on tree-ring 

records.  

These studies found that tree-rings exhibit larger persistence than instrumental rainfall (Franke 

et al., 2013a; Zhang et al., 2015). This is because the relationship between rainfall and tree 

growth is mediated by temperature and soil moisture, which exhibit stronger persistence than 

rainfall. The stronger persistence signal will influence subsequent drought risk 

estimates(Ludescher et al., 2020; Yuan et al., 2021). Because proxy data can  contain a mix of 

climate signals, which can influence the persistence signal, an evaluation  of the persistence 

signal in Antarctic ice cores is needed before it can be used to estimate drought risk and inform 

water management.  
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Various properties are measured in ice cores – in this study, we evaluate the persistence signal 

from two common measurements: annual snowfall accumulation and annual sodium (Na+) 

concentration.  

 

Snowfall accumulation is a measure of how much snowfall was incorporated into the ice sheet 

over a given period (typically annual). Clearly, this is closely related to regional snowfall, 

which in turn is driven by regional weather/synoptic systems (Thomas et al., 2017; Wang et 

al., 2017).  

 

Various processes could potentially confound the persistence signal in annual snowfall 

accumulation records preserved in ice cores. Wind deposition or erosion can remove or 

redistribute snowfall from one area to another, distorting the eventual annual layer (Thomas et 

al., 2017; Wang et al., 2017). Advection of ice upslope from where the ice core is drilled, 

combined with different climate conditions at the deposition site (e.g. a lower annual snowfall 

rate), may introduce bias (Huybrechts et al., 2007). Finally, annual ice layers also thin over 

time. This is due to the vertical strain caused by new snowfall and downslope movement of the 

ice sheet (Dansgaard and Johnsen, 1969). When inferring ice accumulation, this thinning can 

be accounted for using a statistical or physical model (Nye, 1963; Parrenin et al., 2004). It is 

unknown if and how the thinning model changes the snowfall accumulation persistence signal, 

although different thinning models produce proxy records with similar persistence (Roberts et 

al., 2015). However, the fidelity of these thinning models with respect to observations is 

unknown.    

 

The second ice core measurement type evaluated in this study is the concentration of sodium 

ions (Na+) in the ice itself. For high annual snowfall sites, ice core Na+ is generally wet 

deposited (e.g. associated with snowfall events) (Wolff et al., 2006). The sodium originates 

from the open ocean or sea ice and is scoured as a direct function of surface wind speed, then 

transported to the ice core site by synoptic scale tropospheric processes (e.g. mid-latitude 

cyclonic circulation). These broader-scale synoptic processes also influence regional 

hydroclimate (Udy et al., 2022, 2021). However, the use of ice core Na+ as a hydroclimatic 

proxy is relatively new; links between ice core Na+ and regional hydroclimate have not been 

studied to the same extent as snow accumulation.    
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Various processes could also confound the persistence signal in ice core Na+ records. Similar 

to snow accumulation records, post-deposition transport or erosion could distort ice core Na+ 

concentration. However, unlike annual snowfall accumulation records, sea salt concentration 

records undergo less statistical post-processing (because thinning does not impact layer 

concentration) (Sigl et al., 2016; Winski et al., 2019). Furthermore, because ice core Na+ 

deposition is primarily mediated by wind, relationships between ice core Na+ and regional 

snowfall are somewhat indirect. Other factors that influence wind and atmospheric circulation, 

both local and global, may also influence ice core Na+ persistence.  

 

Complicating an evaluation of Antarctic ice core persistence is a lack of long-term, in-situ 

precipitation observations that can be used for validation. However, some mid-latitude regions 

have long-term observations, and these regions are hydroclimatically linked to Antarctica. For 

example, there are common synoptic systems influencing east Antarctic snowfall and southern 

Australian rainfall (Udy et al., 2022, 2021; van Ommen and Morgan, 2010; Zheng et al., 2021). 

Southern Ocean storm fronts also drive rainfall in western South Africa (Stager et al., 2012). 

Furthermore, variability in the mean latitudinal positions of Southern Ocean storm tracks are 

influenced by the El Nino Southern Oscillation (ENSO) (Crockart et al., 2021; Dätwyler et al., 

2020; Vance et al., 2013). ENSO is also a primary driver of climate variability in the  

mid-latitude Southern Hemisphere (Kiem and Franks, 2004; Power et al., 1999; Westra et al., 

2015). This means climate variability in mid-latitudes (i.e. 23.5°S to 50°S) and high latitudes 

are influenced by the same large-scale drivers and synoptic systems. Due to these links between 

Antarctic and mid-latitude climate, extended rainfall observations from Southern Hemisphere 

subtropical and temperate zones that are climatologically linked to the Southern Ocean and 

Antarctica can be used to validate the persistence signal in ice cores.  

 

In this study, we evaluate the persistence signal in hydroclimatically sensitive, Antarctic ice 

core proxies using extended rainfall timeseries from the mid-latitude Southern Hemisphere. 

Due to a lack of in-situ ice core measurements, it is not possible to compare ice core 

measurements and rainfallon a site-by-site basis. Instead, statistical distributions should be 

compared to assess if the ice core and rainfall sampling distributions are similar. Further 

inferences about ice core bias (or lack thereof) are made based on two assumptions:  

1. That Antarctica and the mid-latitudes exhibit similar hydroclimatic persistence. This 

assumption is based on studies which demonstrate that hydroclimatic persistence 
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exhibits no broad-scale spatial dependence (Fatichi et al., 2012; Iliopoulou et al., 2018; 

Markonis et al., 2018).  

2. Any difference between ice core and rainfall persistence is due to non-hydroclimatic 

factors impacting the ice core (e.g., wind deposition and erosion, ice sheet thinning, 

statistical processing of original measurements, additional climate signals). Conversely, 

any similarity is due to the accurate recording of hydroclimatic persistence in the ice 

core proxies.  

 

 

2.3 Data 
Rainfall stations and ice core records used in this study are shown in Figure 2-1. In total, 57 

annual snowfall accumulation records, 48 ice core Na+ records, and 886 rainfall stations (32 

from South Africa, 48 from New Zealand, and 806 from Australia) were included in the final 

analysis (no stations from South America met the selection criteria). All annual data is based 

on calendar year.  
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Figure 2-1: Data used in this study 

 

2.3.1 Rainfall data 

Rainfall data was taken from three different sources. For Australian stations, rainfall data was 

taken from the SILO dataset. SILO is a publicly available climatological dataset 

(https://www.longpaddock.qld.gov.au/silo/) which provides station data throughout Australia 

(Jeffrey et al., 2001). SILO was selected over globally focussed datasets because missing daily 

values had already been infilled via multivariate interpolation (referred to as ‘patched point’ 

data). Such infilling is not typical in globally focussed datasets. Other stations were taken from 

the Global Historical Climatological Network Daily (GHCN-D). GHCN-D comprises daily 

climate data from ~80,000 stations worldwide and has undergone an automated quality 

assurance check (Durre et al., 2010; Menne et al., 2012). This data has been used in previous 

https://www.longpaddock.qld.gov.au/silo/
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studies examining long-term persistence in rainfall (Iliopoulou et al., 2018; Tyralis et al., 2018). 

Finally, because extended rainfall stations from New Zealand are not included in the GHCN-

D dataset, data for this country was downloaded from the National Institute of Water and 

Atmospheric Research (NIWA) CliFlo database (https://cliflo.niwa.co.nz/). Note that there is 

little documentation describing the CliFlo database, meaning quality control/infilling methods 

are unknown to the authors. Rainfall stations were selected based on record length, proportion 

of non-missing years, and location/climate zone - specific criteria will now be discussed.  

 

Regarding rainfall record length, although instrumental measurements contain limited 

information about long-term persistence, this can be somewhat remediated by examining long 

observational records (e.g. over 100-years) (Koutsoyiannis, 2003). As such, for SILO; GHCN-

D; and CliFlo datasets, only stations with observations spanning 100 years were selected. In 

the case of the SILO data, where missing data has been infilled via spatial interpolation, stations 

were included if they comprised 80% observations. Annual values for SILO stations were 

calculated as an average of daily rainfall totals. For GHCN-D stations, stations with a minimum 

of 90% complete years were selected. A complete year comprised of 90% observations. A 

sensitivity analysis was conducted which varied these specific percentage thresholds, but no 

difference was found in the distributions of subsequent persistence statistics. GHCN-D station 

annual values were calculated as the average daily total for non-missing days. Finally, CliFlo 

stations (for which annual rainfall totals were downloaded directly) were selected provided 

they had a minimum of 90% non-missing years.  

 

Missing values in annual GHCN-D and CliFlo timeseries were infilled using the K-Nearest 

Neighbour method.  

 

Regarding location, rainfall stations were considered provided they (a) were located 

below -23.5°S (a rough approximation for the Tropic of Capricorn); and (b) were in a 

Temperate Koppen-Geiger climate zone with winter rainfall influences (i.e., Csa; Csb; Csc; 

Cfa; Cfb; and Cfc climate subgroups). These regions were selected to reduce the influence of 

tropical synoptic systems on station rainfall. The climate zones were selected to ensure station 

rainfall was somewhat influenced by Southern Ocean synoptic systems, which have their 

strongest influence on mid-latitude rainfall during winter (Meneghini et al., 2007; Reason and 

Jagadheesha, 2005; Risbey et al., 2009).  

 

https://cliflo.niwa.co.nz/
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2.3.2 Snowfall accumulation records  

Snowfall accumulation records were mainly taken from Thomas et al. (2017). Along with this 

dataset, more recent ice core records were also included: the South Pole Ice Core of Winski et 

al. (2019) and the updated Law Dome record of Jong et al. (2022). Only annually resolved 

records were chosen, with most records having average accumulation rates > 100 kg m2 year-1. 

For high accumulation sites like these, the impact of post-deposition processes on the final 

accumulation should be small (i.e. most of the initial snowfall will be accumulated into the ice 

sheet, regardless of post-deposition redistribution).  

 

From the initial dataset, accumulation records were selected for further analysis if (a) they 

contained at least 100 observations in the period overlapping with rainfall records (which was 

1853 onwards); and (b) had no more than 10% missing data from the first year to the last years. 

57 records met these requirements, with all records having <5% missing years. Missing years 

were infilled using the K-Nearest Neighbour method.  

 

2.3.3 Sea salt (Na+) records  

Sea salt concentration records were taken from Thomas et al. (2023), who collated various ice 

core geochemistry records (including Na+ concentration). Na+ records were screened and 

infilled following the same method used for accumulation. Many of the selected Na+ records 

were close to the coast and located at or near high snow accumulation sites, which means Na+ 

is more likely to be deposited with snowfall (i.e. wet deposition) than  

 

Note that there are other ice core proxies available, such as Na+ deposition flux and various 

sulphate records. However, Na+ deposition flux is calculated based on multiplying Na+ 

measurements by snowfall accumulation rate (Thomas et al., 2023). This multiplication 

introduces a dependence between the deposition flux and accumulation and is likely only 

necessary at annual snowfall accumulation rates of less than 100 kg m2 year-1 (~10 cm ice 

equivalent per year) (Wolff et al., 2006). Because most of the study sites were from high 

accumulation areas, Na+ concentration was evaluated instead of deposition flux. Sulphate 

records were also not considered. These records are closely linked to volcanic activity and 

marine biogenic emissions (Curran et al., 2003; Plummer et al., 2012; Sigl et al., 2016) Links 

with hydroclimate are less clear and require further research (Thomas et al., 2023) 
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2.4 Methods 
 

In this study, we calculated and compared distributions of the Hurst coefficient - a common 

measure of timeseries persistence (Hurst, 1951). The Hurst coefficient is a dimensionless 

measure of how timeseries variance changes across aggregation scale, which is indicative of 

how similar timeseries values cluster. Stationary timeseries have Hurst coefficients ranging 

from 0 to 1. Timeseries with no persistence (i.e. white noise) have a coefficient of 0.5.  In 

contrast, persistent timeseries (e.g. geophysical timeseries) have a Hurst coefficient >0.5. The 

Hurst coefficient has been used extensively to study and characterise persistence in 

hydroclimatic timeseries - for detailed reviews, refer to O’Connell et al. (2016) and Graves et 

al. (2017).  

 

There are various methods of estimating the Hurst coefficient. To account for this uncertainty, 

we calculated and compared Hurst distributions using the following methods: 

● Rescaled range (R/S) (Mandelbrot and Wallis, 1969); 

● Least squares based on standard deviation (LSSD) (Tyralis and Koutsoyiannis, 2011); 

● Whittle estimator (Beran, 2017); 

● Detrended fluctuation analysis (DFA) (Peng et al., 1995); 

● Maximum likelihood estimator (MLE) (McLeod and Hipel, 1978); 

● Periodogram regression via the Geweke and Porter-Hudak method (GPH) (Geweke and 

Porter-Hudak, 1983).  

For a description of the different persistence estimators (and a thorough assessment of their 

differences), refer to Taqqu et al. (1995); Tyralis and Koutsoyiannis (2011); and Weron (2002).  

 

Although there are numerous methods of estimating the Hurst coefficient, these persistence 

estimators can be biased when performed on small sample sizes (Cannon et al., 1997; Hamed, 

2007; Kendziorski et al., 1999; Wallis and Matalas, 1970). To assess potential biases in the 

different Hurst coefficient estimators, an analysis using synthetic data was conducted. 

Synthetic timeseries 125 years long (the mean length of the rainfall records used in this study) 

were created via a Fractional Gaussian Noise (FGN) model (Mandelbrot, 1971). The FGN 

model can generate timeseries with a specific Hurst coefficient (subject to sampling 

uncertainty). For Hurst coefficients ranging from 0.5-0.7 (increments of 0.02), 1,000 synthetic 

timeseries were generated and the Hurst coefficient estimated. 

https://www.zotero.org/google-docs/?Bvx26p
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Figure 2-2 shows Hurst coefficient sampling distributions for the different estimators, 

calculated from the synthetic data. We can see that: 

• All methods, aside from GPH, tended to underestimate the Hurst coefficient. 

• The R/S estimator had the largest bias in underestimating the Hurst coefficient.  

• The DFA estimator consistently underestimated the Hurst coefficient, however, this 

was offset by larger sampling variability.  

• The GPH estimator had much larger sampling variability than the other estimators.  

 

We excluded the R/S estimator due to its bias. We excluded the GPH estimator due to its large 

sampling variability (GPH sampling distributions consistently spanned the entire 0-1 stationary 

range). Large sampling variability reduces statistical power (i.e., the ability of a statistical test 

to detect differences).  

 

 
Figure 2-2: Hurst coefficient sampling distributions calculated from synthetic data. Red lines show the Hurst 

coefficient used when generating synthetic data with Fractional Gaussian Noise model.  
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Aside from the estimation method, comparing Hurst distributions is also complicated by 

considerable sampling uncertainty. For timeseries containing ~100 values (i.e, the timeseries 

used in this study), Hurst coefficients estimated from white noise can cover most of the 

stationary 0-1 range (Weron, 2002). Sub-sampling different periods of the same record can also 

result in different Hurst coefficient estimates (Markonis and Koutsoyiannis, 2016). To 

minimise how differences in rainfall and ice core record length and period could influence the 

analysis, we used the following method to compare rainfall and ice core persistence signals:   

1. Randomly assign a rainfall station to each of the ice core records (e.g. randomly choose 

57 rainfall records and assign each to an ice accumulation record).  

2. Subset corresponding ice core and rainfall records to cover the same period.  

3. Calculate the Hurst coefficient of each record using different estimation methods.  

4. Calculate the difference between corresponding ice core and rainfall Hurst coefficients 

for each estimation method.  

5. Evaluate the difference distribution via the Student’s T-test and Wilcoxon Rank Sum 

test respectively. An insignificant test result indicates that ice core and rainfall 

persistence is statistically similar.   

6. Repeating steps 1-4 until all rainfall records had been assigned to an ice core record. 

Note that there were 57 ice accumulation records, 48 ice core Na records, and 886 

rainfall records. This meant that there were 15 ice accumulation/rainfall samples and 

19 ice core Na+/rainfall samples. For the 15th and 19th accumulation and ice core Na 

samples, some rainfall records had to be resampled.  

 

Aside from accounting for sample size sensitivity, Step 1 and Step 2 served two other purposes. 

First, Step 1 (randomly sub-sampling/pairing rainfall records with ice core records) increased 

the likelihood of independent rainfall samples. Although various studies have indicated that 

hydroclimatic persistence does not change across the high and mid-latitudes (Fatichi et al., 

2012; Iliopoulou et al., 2018; Markonis et al., 2018), there is evidence for spatial correlation at 

scales less than 200km (Tyralis et al., 2018). This should be accounted for because both the 

Student’s T-test and Wilcoxon test assume independent samples. Second, Step 2 (i.e. subsetting 

the records to cover the same period) ensured that ocean-atmospheric processes influencing 

Antarctic and mid-latitude climate variability (e.g., ENSO, Southern Annular Mode) were in 

the same relative state for both records.  

 

https://www.zotero.org/google-docs/?xaCQGI
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When interpreting results from the proposed method, note that there is large statistical 

uncertainty when estimating the Hurst coefficient from ~100-year timeseries. Naturally, a 

question arises: what differences in persistence statistics can we meaningfully detect with the 

proposed method? In other words, what is the statistical power of the proposed method? To 

assess statistical power, we conducted a similar analysis using synthetically generated data.  

 

As with the bias analysis (Figure 2-2), the statistical power analysis involved generating ice 

core/rainfall timeseries via a Fractional Gaussian Noise (FGN) model (Mandelbrot, 1971). 

Synthetic 125-year ice core and rainfall timeseries were generated using the FGN model with 

combinations of Hurst coefficients ranging from 0.54-0.64 (in increments of 0.02). 125-years 

was selected because this was the mean length of the rainfall timeseries.  

 

For each combination of ice core and rainfall Hurst coefficient, 50 synthetic ice core and 

rainfall timeseries were generated (similar to the number of Na+ records used). For each 

timeseries, the Hurst coefficients were calculated. The distribution means and medians were 

then compared using a Student T-test and Wilcoxon test. Note that, for the synthetic 

experiment, pairing/subsetting was not necessary. This was repeated 500 times, with the 

proportion of statistically significant p-values (i.e., p-value less than 0.05) calculated. For 

synthetic timeseries with the same Hurst coefficients, approximately 5% of the p-values will 

be significant.  

 

Results from the statistical power analysis are shown in Figure 2-3. Rows (columns) display 

the Hurst coefficient of synthetic ice core (rainfall) data. We can see that all Hurst coefficient 

estimation methods and statistical tests correctly identify differences when Hurst coefficients 

differ by 0.1. However, statistical power decreases as the difference between synthetic Hurst 

coefficients become smaller. For the DFA estimator, statistical power decreases when the 

difference is 0.08 or smaller. For the other estimators, statistical power is low when the 

difference is 0.04 or smaller. This suggests that the study method is unable to detect small 

differences between ice core and rainfall persistence. Instead, any potential bias in Hurst 

coefficient will be at most ~0.04 (for the LSSD, MLE, and Whittle estimators) and ~0.08 for 

the DFA estimator. However, compared with the large sampling variability evident in Figure 

2-2, such biases are small.  
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Figure 2-3: Proportion of statistically significant p-values from 500 iterations of the synthetic experiment. A single 

iteration involved generating 61 synthetic rainfall/ice core timeseries with a specific Hurst Coefficient and 

comparing distributions.  Synthetic timeseries were 125 years long, which was the average length of the observed 

rainfall records. Rows (columns) display the coefficient of synthetic ice core (rainfall) data. 

 

Aside from comparing Hurst coefficients, we also compared ice core and rainfall power 

spectrum. The global wavelet power spectrum was calculated for each record using the Morelet 

convolution (Torrence and Compo, 1998). For rainfall, ice accumulation, and ice core Na+, the 

median and 90% sample intervals of the global average power were calculated for different 

periods. This was to evaluate if ice core and rainfall records had similar power for interannual 

frequencies. Because Antarctic and mid-latitude hydroclimate is influenced by ENSO, we 

expect similar spectral power across the 3-7 year period associated with ENSO variability.  

 

Prior to the wavelet analysis, both the ice core and rainfall records were detrended. Either linear 

or quadratic detrending was used. Detrending method was chosen by fitting and comparing two 

regression models – one with time as a single predictor (i.e linear detrending), another with 
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time and time squared as a predictor (i.e. quadratic detrending). Detrending was performed 

using the model with the lowest Akaike Information Criterion. Note that in the absence of a 

statistically significant trend, this approach is equivalent to subtracting the mean from the 

record. This subtraction is already necessary prior to wavelet analysis. Therefore, detrending 

was applied to all ice core and rainfall records.  

 

Note that detrending is necessary prior to spectral analysis, but not prior to calculating the Hurst 

coefficient. There are two key reasons for this difference. First, some Hurst coefficient 

estimation methods have specific detrending steps (e.g. DFA), so explicit detrending was not 

necessary (Peng et al., 1995). Second, a key purpose of detrending prior to spectral analysis is 

to remove any low-frequency ‘leakage’ that might confound the higher frequency signals of 

interest. In contrast, to estimate the Hurst coefficient, any low-frequency signal should be 

preserved, not removed. Furthermore, for Hurst coefficient estimation methods without an 

explicit detrending step, there is limited guidance on if and how trends should be considered. 

Therefore, methods were applied as described in the relevant journal article.  

 

2.5 Results  
Figure 2-4 shows the mean and median difference between ice core and rainfall Hurst 

coefficients. We can see that:  

• Annual snowfall accumulation and rainfall records had statistically similar Hurst 

coefficients, regardless of rainfall sample and Hurst coefficient estimator.  

• Ice core Na+ records had higher Hurst coefficients than rainfall records (around 0.05 

higher, on average). This was sensitive to rainfall sample and Hurst estimator.  

  

In Figure 2-4, note that some significant and insignificant results were not perfectly separated 

along the x-axis. This is because different samples had different variance (Figure 2-5) and 

sample variance will also influence the statistical significance.   
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Figure 2-4: Mean and median difference between ice core and rainfall samples. Significant and insignificant 

results are shown. 
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Figure 2-5: Difference distributions used for tests in Figure 2-4. Note that Figure 2-4 shows the mean and median 

of the difference distribution, shown here are the actual difference distributions.  

 

Results presented in Figure 2-4 were derived from a sampling method designed specifically for 

this study. It was also of interest to see if a more generic comparison would return similar 

results. This involved calculating and comparing Hurst coefficients from the entire sample of 

ice core and rainfall records (i.e. no sub-sampling and sub-setting of rainfall data). Figure 2-6 

shows that the results from this are similar to the results shown in Figure 2-4. Although similar 

results were returned, the sub-sampling approach is still useful for evaluating the sensitivity of 

the analysis to rainfall sample.   



42 
 

 
Figure 2-6: Comparison of ice core and rainfall Hurst coefficients, but without the sampling method used for 

Figure 2-4 

 

A comparison of ice core and rainfall spectral power is shown in Figure 2-7. Compared with 

rainfall, both annual snowfall accumulation and ice core Na+ had similar spectral power over 

interannual frequencies (i.e. 3-7 years). However, ice core Na+ records had higher spectral 

power for the 10 to 20-year frequencies. The ice accumulation records also had higher spectral 

power for the 30 to 40-year frequencies.  
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Figure 2-7: Wavelet average global power for rainfall and ice core datasets. Median (dashed line) and 90% 

confidence intervals (solid lines) are shown. 

 

2.6 Discussion 
The two key findings from this study are: 

• Ice core accumulation records have similar persistence to mid-latitude rainfall records. 

This result was robust to rainfall sample used and persistence estimator.  

• Ice core sea salt records have higher persistence than mid-latitude rainfall records. This 

result was sensitive to rainfall sample and persistence estimator.  

 

Before discussing these findings further, note the key assumption made in this study: high and 

mid-latitudes exhibit similar hydroclimatic persistence. Various studies suggest that this 

assumption is valid (Fatichi et al., 2012; Iliopoulou et al., 2018; Markonis et al., 2018). This 

allows high-latitude ice cores and mid-latitude rainfall records to be compared fairly. However, 

these studies are still limited by the high sampling uncertainty that comes with estimating 
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persistence from ~100 years of data. This makes identifying any spatial coherence using 

instrumental measurements challenging because any potential signal could be dominated by 

noise.  

 

The large sampling uncertainty of the Hurst coefficient also limited the statistical power of the 

analysis. Small differences in annual snowfall accumulation and rainfall persistence cannot be 

detected. However, other studies analysing the Hurst coefficient using different rainfall datasets 

have found a median value of ~0.55-0.6 (Fatichi et al., 2012; Iliopoulou et al., 2018; Taqqu et 

al., 1995; Tyralis et al., 2018), consistent with the annual snowfall accumulation records 

evaluated in this study (Figure 2-6). This also suggests that potential differences in ice core 

records are small compared with the sampling uncertainty inherent in persistence statistics. 

Future work should explore if these small differences significantly impact drought risk 

estimates.  

 

With these limitations and assumptions in mind, this study shows that ice core accumulation 

records contain realistic representations of Southern Hemisphere hydroclimatic persistence. 

This indicates that, on average, post-deposition processes, additional non-hydroclimate 

influences, and statistical processing of collected cores does not bias the underlying persistence 

signal. However, these findings pertain to the ice core accumulation sample, not individual 

records. Biases may still be present in individual accumulation records.  

 

These findings should be considered in conjunction with the key motivating factors for this 

study. These were (a) the potential benefits of including palaeoclimate information in climate 

risk assessments and water management and (b) the limited annually resolved, in-situ proxy 

records in the Southern Hemisphere (especially in Australia and Southern Africa). For ice core 

accumulation records, a realistic persistence signal, a clear link with regional hydroclimate, 

and much longer record lengths make them ideal for studying climate risks posed by 

low-frequency climate variability (particularly in the mid-latitude Southern Hemisphere). 

However, future work is needed to bridge the gap between the information we can reasonably 

extract from proxy records and the requirements of operational climate risk assessment (Galelli 

et al., 2021). Based on this study, any such work can use annual snowfall accumulation records 

with increased confidence in the corresponding persistence signal.  

 

https://www.zotero.org/google-docs/?JNz72h
https://www.zotero.org/google-docs/?JNz72h
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In contrast to the ice accumulation records, the ice core Na+ records had higher persistence 

than rainfall; what might cause this discrepancy? Na+ records undergo minimal statistical 

post-processing, which makes confounding climate signals the most likely cause.  

 

With respect to potential confounding climate signals, ice core aerosol concentration (which 

include Na+) is negatively correlated with ice core oxygen isotope ratios, which are a 

temperature proxy (Buizert et al., 2015; Lambert et al., 2008). Markle et al. (2018) proposed 

that the mediating factor between ice core aerosols and oxygen isotope ratios is mid-latitude 

‘rainout’ of aerosols – isotope ratios are high when temperature is high, high temperatures 

increase atmospheric moisture capacity (governed by Clausius-Clapeyron scaling) and 

increased moisture capacity leads to more aerosols being ‘rained’ out of the atmosphere in the 

mid-latitudes and less being aerosols being transported to Antarctica. Following this theory, 

lower oxygen isotope ratios and temperature means that more aerosols are transported to 

Antarctica, meaning temperature can influence ice core Na+. Because temperature timeseries 

exhibit larger persistence than rainfall (Franke et al., 2013a), this relationship could explain the 

study results. However, this proposed relationship occurs over much longer timescales than 

those considered in this study. Moreover, in the coastal high-resolution records used in this 

study, event-scale moisture intrusions to the Antarctic ice sheet from the mid-latitudes (e.g. 

Pohl et al., 2021; Wille et al., 2021) can overwhelm the annual water isotope signal (Jackson 

et al., 2023). 

 

Na+ concentration and persistence can, potentially, be influenced by multiple climate variables. 

When considering these climate influences, what persistence structure might we expect? The 

answer is not immediately clear. Therefore, unlike annual snowfall accumulation, it is not 

appropriate to label a difference between ice core Na+ and rainfall persistence a ‘bias’. Instead, 

ice core Na+ will likely contain a mixture of climate signals, similar to tree-rings.  

 

Considering ice core Na+ records in water management will require a more in-depth 

understanding of the climate signal in individual records. There may be ice core Na+ records 

which are clearly linked to hydroclimate and accurately record hydroclimatic persistence. For 

example, in East Antarctica, clear physical links between synoptic patterns and ice core Na 

concentration have been demonstrated. In contrast, other ice core Na+ records may be primarily 

influenced by temperature, which would result in a different persistence structure. However, 

this requires extensive, site-specific analysis and modelling. In lieu of these specific analyses, 



46 
 

we are restricted to either (a) statistical analyses that correlate ice core Na+ with climate or (b) 

sample-scale evaluations (i.e. this study).  

 

2.7 Conclusion 
In this study, the hydroclimatic persistence signal in Antarctic ice core records was evaluated. 

We evaluated two ice core measurements – annual snowfall accumulation and ice core Na+ 

concentration. We found that ice accumulation records contain a relatively unbiased 

persistence signal. This indicates that the post-deposition processes and statistical processing 

of ice accumulation measurements do not confound the underlying persistence signal. In 

contrast, the ice core Na+ records typically overestimated hydroclimatic persistence. Reasons 

for this difference were outside the scope of this study, however, it seems likely that other 

climate variables (e.g. temperature) also influence Na+ persistence. Results from this study 

will guide future research on paleoclimate-informed climate risk assessment in the mid-latitude 

Southern Hemisphere 

2.8 Links with following chapters 
Because ice core records are, currently, the primary source of annually resolved, palaeoclimate 

information available for Australia, results from Chapter 2 will inform the incorporation of ice 

core information in water management-based climate risk assessment. Results from Chapter 2 

are useful because any palaeoclimate-informed climate risk assessment should consider the 

fidelity of the climate signal contained in potential proxies. Therefore, results from Chapter 2 

are used to justify the subsequent incorporation of ice core persistence in a 

palaeoclimate-informed stochastic modelling framework (Chapter 6).    
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Chapter 3. Evaluating different stochastic models using 

a global network of millennium-length hydroclimatic proxy 

records  
3.1 Abstract 
Stochastic models are used by water managers/hydrologists to generate long synthetic 

hydroclimate time series with statistics consistent with the input record (usually the 

instrumental record). These series contain droughts more severe than found in the instrumental 

record, making them useful for characterising drought risk. However, instrumental records are 

short (~100 years long) and contain limited information about low-frequency climate 

variability.  This makes stochastic model validation with respect to low-frequency climate 

variability difficult. Hydroclimatic proxy records (e.g. tree rings and ice cores) are often several 

hundred years in length and, being representative of local/regional precipitation, provide an 

opportunity to validate different stochastic models using observed data of sufficient length to 

characterise low-frequency climate variability. In this study, we investigated the performance 

of nine commonly used stochastic models (AR(1), ARMA(1,1), ARFIMA(0,D,0), 

ARFIMA(1,D,0), Symmetric Moving Average, two and five-state Hidden Markov, k-Nearest 

Neighbour Bootstrap, and Wavelet Autoregressive models) in capturing different statistics 

related to low-frequency climate variability contained in proxy records. These models were 

validated on 45 millennium length hydroclimatic proxies located across both hemispheres. We 

found that (a) proxy data from the last 100 years (i.e. the instrumental period) is consistent with 

an AR(1) model; (b) stochastic models calibrated to the instrumental record do not reproduce 

pre-instrumental statistics; and (c) when calibrated to the entire proxy record, only the 

ARFIMA(0,D,0), ARFIMA(1,D,0), ARMA(1,1), Symmetric Moving Average, and five-state 

HMM models were able to reproduce statistics from the entire proxy record. Critically, the 

AR(1) model – widely used in operational hydrology - was unable to capture low-frequency 

climate variability when calibrated to the entire proxy record. This research highlights potential 

limitations associated with using stochastic models calibrated to the instrumental record to 

characterise baseline climate risk.  
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3.2 Introduction 
Water supply should be resilient to drought. To design water supply systems that are drought 

resilient, drought risk must first be estimated. Drought risk can be viewed in terms of the 

drought hazard (e.g. the duration and severity of potential droughts), drought exposure (e.g. the 

probability of experiencing a drought), and drought vulnerability (e.g. the social, economic, 

and environmental impacts of a drought) (Kim et al., 2015). In this study, we evaluate key tools 

used by water managers to estimate drought hazard and exposure, which we refer to as ‘drought 

risk’. 

 

Estimating drought risk is difficult for three compounding reasons. First,  measurements of 

rainfall and streamflow have only been taken since ~1900 (D. Jones et al., 2009; Menne et al., 

2012). Second, hydroclimatic processes have, in a practical sense, random elements 

(Koutsoyiannis, 2010). This means that observed records represent just one possible realisation 

of past climate (McKinnon and Deser, 2021; Sivakumar, 2000). Third, at an annual timescale, 

hydroclimatic processes are persistent (i.e. wet and dry years tend cluster). This means that, in 

an instrumental record, only a few droughts are record, which reduces the effective sample size 

from which drought risk can be characterised (Hu et al., 2017; Koutsoyiannis and Montanari, 

2007). For these three reasons, quantification of drought risk from a short, somewhat random 

record that contains a limited number of droughts is challenging.  

 

To address short record length, randomness, and persistence when estimating drought risk, 

stochastic models can be used (Loucks and Van Beek, 2017). These models typically represent 

rainfall/streamflow as a weighted sum of previous timesteps plus random noise (Box et al., 

1970). Stochastic models are first calibrated to instrumental measurements, then used to 

generate synthetic timeseries of arbitrary length (Matalas, 1967; Stedinger and Taylor, 1982b). 

These synthetic timeseries have similar statistics to the calibration data (i.e. instrumental 

measurements), but can contain droughts of greater severity. These synthetic timeseries can be 

used to characterise an extreme drought. However, when using a stochastic model to estimate 

drought risk, there is an implicit assumption that the instrumental record (i.e. the calibration 

data) is representative of the full range of climate variability that is possible. But, is this a valid 

assumption?  
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Estimating drought risk using an ‘instrumental-period’ stochastic model is further complicated 

by low-frequency (i.e., multi-decadal/centennial climate variability). Short instrumental 

records contain few multi-decadal cycles and no multi-centennial cycles. This means 

instrumental records are likely too short to (a) quantify the full range of natural climate 

variability (Vance et al., 2022); and, crucially, (b) validate a stochastic models ability to 

reproduce low-frequency variability. These limitations make it hard to (i) falsify simple 

stochastic models that do not account for low-frequency climate variability (Thyer et al., 2006); 

and (ii) justify the use of more complicated stochastic models that can account for low-

frequency variability (Markonis et al., 2018). This inability to properly validate stochastic 

models highlights potential limitations with using a stochastic model calibrated to the 

instrumental record to characterise climate risk (Armstrong et al., 2020).  

 

One option to overcome issues of short record length is to validate stochastic models using 

palaeoclimate proxy records. These records are taken from physical ‘layers’ with properties 

sensitive to climate (e.g., tree ring width being sensitive to available moisture), which are 

typically several hundred years in length (Griffin and Anchukaitis, 2014; Ho et al., 2015a; 

Verdon-Kidd et al., 2017). When examining the climate variability contained in these proxy 

records, they can either be mapped to a related climate variable via a statistical model (e.g., 

linear regression) or studied as is (Gangopadhyay et al., 2009; P. Jones et al., 2009; Razavi et 

al., 2015). However, although various studies have highlighted that palaeoclimate records 

contain signals that indicate droughts of greater severity than those experienced in the 

instrumental record, limited work has been conducted on using proxy records to validate 

stochastic models.  

 

Koutsoyiannis (2003) and Iliopoulou et al (2018) demonstrate how palaeoclimate proxy data 

can be used to evaluate a stochastic model. Both studies demonstrated that the AR(1) model, 

which is commonly used in hydrology/water management, is unable to reproduce the 

autocorrelation structure of millennium-length hydroclimatic proxy timeseries. However, these 

studies were primarily focussed on explaining and validating a statistical framework that 

describes the Hurst phenomenon (a term for low-frequency climate variability). There is a need 

to validate different stochastic models using proxy data. In this study, we will build on insights 

from these studies and evaluate various stochastic models using several proxy records and 

statistics relevant to water resource management.   
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Although limited research has been conducted evaluating stochastic models using proxy data, 

various studies have used proxy data to (a) understand historic climate variability; and (b) 

inform water supply system adaptation. For example, reconstructions of southeast Australian 

climate variability have identified extended drought periods – some greater than 30 years, 

which is far longer than any instrumental record drought – that would significantly impact 

regional water security (Flack et al., 2020; Tozer et al., 2018; Vance et al., 2015). Moreover, 

when evaluating water supply systems using palaeoclimate informed streamflow scenarios in 

North America, various studies have demonstrated that system performance is unsatisfactory 

(meaning operational requirements were not met) and identified adaptations that improved 

system performance (Sauchyn et al., 2015; Tingstad et al., 2014). 

 

All studies looking at palaeoclimate reconstructions are impacted by assumptions, uncertainties 

and potential biases introduced by the statistical reconstruction model. For example, 

underpinning all statistical reconstructions is an assumption that the proxy-climate relationship 

is stationary and can be inferred from the instrumental-period. However, numerous factors 

influence proxy properties; the relative influence of these factors may change between 

instrumental and pre-instrumental periods (D’Arrigo et al., 2008; Kiem et al., 2020). This 

means that the statistical model calibrated from the instrumental period may not be wholly 

suitable for some pre-instrumental periods.  

 

Considering these limitations, for the purpose of evaluating stochastic models or making 

general inference about climate risk, it may be preferrable to use the original proxy records 

This alleviates potential biases introduced by a statistical reconstruction model and instead 

makes a more general assumption that the proxy record contains some hydroclimatic signal. 

Razavi et al. (2015) adopted this approach of examining the original proxy records when 

examining hydroclimatic non-stationarity in Canadian tree-ring chronologies. However, even 

with this approach, proxy records are still imperfect recorders of climate information (discussed 

in Section 3.3.2). As such, when making inference about past climate from proxy records there 

is an implicit assumption that any unexplained variability is not systematic with respect to the 

proxy records (i.e. the unexplained variability in instrumental and pre-instrumental periods is 

serially independent and has no positive or negative bias). 

 

Regardless of whether statistical reconstructions or proxy records are examined, 

palaeoclimatology and stochastic models have an overlapping goal: characterising climate 
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variability. Palaeoclimatology pursues this goal by statistically modelling physical 

relationships between climate and climate proxies; stochastic models pursue this goal by 

statistically modelling the inherent randomness and persistence of the climate system. 

Considering the relative simplicity of stochastic models and the availability of independent 

proxy records that represent pre-instrumental climate variability, it is of interest to assess the 

ability of stochastic models to simulate pre-instrumental variability when calibrated to the 

instrumental record. It is also of interest to identify whether stochastic models can reproduce 

low-frequency climate variability captured by proxy data. As such, in this study we will explore 

the following research question:  

1. Can stochastic models calibrated to the instrumental-period capture pre-instrumental 

variability?  

2. Which stochastic models best reproduce low-frequency climate variability?  

 

Both questions have important implications for the use of stochastic models to quantify 

baseline climate risk in water management. Addressing question 1 has implications for 

assessing the adequacy of current approaches that base the design of robust water supply 

systems on historic climate variability. Question 2 will help inform the future selection of 

stochastic models when accounting for climate variability in hydroclimatic risk analysis. This 

has implications for evaluating water supply system performance under pre-instrumental 

climate variability and any subsequent system adaptation.  

 

3.3  Data 
3.3.1 Proxy records used 

There are numerous proxy records that could be used to validate stochastic models. In this 

study, we selected proxies based on the following criteria:  

● Publicly available 

● Described in a peer-reviewed journal article 

● Annual temporal resolution 

○ This allowed easier comparison with existing stochastic model validation 

studies – many of these studies use annual rainfall/streamflow data. Note that 

this effectively ruled out coarser resolution speleothem, lake sediment, and 

pollen proxy records.  

● At least 1,000 years long 
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○ This ensured that proxy records covered periods associated with the Medieval 

climate anomaly and the Little Ice Age, plus some very large and well-dated 

volcanic eruptions that have had significant effects on lobal and regional 

climates.  

 

This screening limited proxy types to be either tree-ring records, ice core snow accumulation, 

and ice core geochemistry records. Given the widespread availability of tree ring records, we 

applied additional screening criteria. These were: 

• Tree ring records are made publicly available as a processed chronology or as a raw, 

unprocessed ring widths (referred to as ‘rwl’ format). If a potential record was available 

in rwl format, there had to be sufficient information in the relevant papers on how to 

standardise into a chronology.  

• The chronology must have been used to reconstruct at least 1,000 years of hydroclimate. 

This ensured that the chronology had a statistically significant relationship with 

hydroclimate. Furthermore, for these chronologies, only the reconstruction period was 

used for stochastic model evaluation. This is because, when producing a tree-ring based 

reconstruction, the overall reconstruction period is selected based on the signal 

coherence of predictor chronologies and constituent tree samples (referred to as the 

Expressed Population Signal, or EPS - Wigley, Briffa and Jones (1984)). This ensures 

that only pre-instrumental periods with some common, and most likely climate related, 

signal were analysed.    

o However, some selected chronologies did not fully meet this criteria. Although 

the chronology was > 1,000 years in length, the associated climate 

reconstruction was not quite 1,000 years long. For these chronologies (morc014, 

oro062, nv516, fl001), the most recent 1,000 years was analysed. The selection 

criteria was relaxed for these chronologies to improve the spatial coverage of 

the dataset (e.g. North Africa, eastern North America).  

 

We also included some Antarctic ice core geochemistry records - more specifically, Sodium 

(Na+) concentration. These records were included because Antarctic and Southern Hemisphere 

mid-latitude hydroclimates are influenced by the same synoptic systems (Udy et al., 2021). For 

example, the Law Dome summer sea salt record and is correlated with east Australian rainfall, 

with east Australia sustaining a significant population (Kiem et al., 2020; van Ommen and 

https://www.zotero.org/google-docs/?p5rrB3
https://www.zotero.org/google-docs/?HZWSL5
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Morgan, 2010; Vance et al., 2015). As such, analysing these proxies still has implications for 

climate risk and stochastic modelling in urban water settings. 

  

Figure 3-1 and Table 3-1 present the proxy records used in this study. In total, 45 proxy records 

were used: 25 tree-ring records, 5 ice accumulation records, and 15 ice core Na+ concentration 

records. All the tree-ring records were from the Northern Hemisphere - primarily North 

America (18), but with some in Asia (four), Europe (two), and Africa (1). In contrast, all ice 

core records were in the Southern Hemisphere. One snow accumulation record was in South 

America. The other four snow accumulation records and all Na+ records were in Antarctica. 

 

https://www.zotero.org/google-docs/?HZWSL5
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Figure 3-1: Location of proxy records used in this study  

 

Many of the tree-ring proxies were publicly available as raw ring width series (rwl). These 

series contain age-related growth trends and various non-climatic signals (discussed further in 

Section 3.3.2). To produce a climate related tree-ring chronology, various pre-processing steps 

are needed. All tree-ring proxies presented in Table 3-1 were pre-processed following the 

methods outlined in the corresponding journal article using either ARSTAN software (available 

at https://www.ldeo.columbia.edu/tree-ring-laboratory/resources/software) or the R package 

‘dplR’ (Bunn, 2008). For a more in-depth review of various millennium-length hydroclimatic 

tree-ring records, refer to Ljungqvist et al., 2020.  

https://www.ldeo.columbia.edu/tree-ring-laboratory/resources/software
https://www.zotero.org/google-docs/?3JG8z5
https://www.zotero.org/google-docs/?aDAz0u


55 
 

 
Table 3-1: Proxy records used in this study 

Record Continent Period 
Analysed 

Proxy Type  Reference ITRDB 
Code 

Dulan, China Asia 159-
1993 

Tree Ring Sheppard et al., 2004 chin006 

Delingha, China Asia 1000-
2003 

Tree Ring Shao et al., 2005 chin050-
chin054 

Uurgat, Mongolia Asia 488-
2013 

Tree Ring Hessl et al., 2018 mong042 

Khorgo, Mongolia Asia 15-2014 Tree Ring Hessl et al., 2018 mong041 

Southern Finland Europe 670-
2012 

Tree Ring Helama, Meirläinen and 
Tuomenvirta, 2009 

finl030-
finl034 

Mount Smolikas, 
Greece 

Europe 730-
2015 

Tree Ring Klippel et al., 2018 gree013-
gree016 

Flowerpot, Canada North 
America 

650-
1989 

Tree Ring Buckley et al., 2004 NA 

Whirlpool Point, 
Canada 

North 
America 

896-
2008 

Tree Ring Case and MacDonald, 
2003 

cana220 

Cedar Knob, USA North 
America 

950-
1998 

Tree Ring Maxwell et al., 2011 wv005 

Barranca de Amealco, 
Mexico 

North 
America 

880-
2008 

Tree Ring Stahle et al., 2011 mexi047 

Tavaputs Plateau, USA North 
America 6-2005 

Tree Ring Knight, Meko and Baisan, 
2010 

ut530 

Mount San Gorgonio, 
USA 

North 
America 

651-
1998 

Tree Ring MacDonald, 2007 ca051 

Southern Colorado 
Plateau, USA 

North 
America 

570-
1990 

Tree Ring Salzer and Kipfmuller, 
2005 

az570 

Jemez Mountains, USA North 
America 

824-
2007 

Tree Ring Touchan et al., 2011 nm583 

Upper Arkansas Basin, 
USA 

North 
America 

216-
2007 

Tree Ring Woodhouse, Pederson and 
Gray, 2011 

Multiple 

Upper Klamath Basin, 
USA 

North 
America 

1000-
2010 

Tree Ring Malevich, Woodhouse and 
Meko, 2013 

or093 

El Malpais,USA North 
America 5-2004 

Tree Ring Stahle et al., 2009 nm580 

Bear River, USA North 
America 

916-
2013 

Tree Ring DeRose et al., 2015 ut541 

Summitville, USA North 
America 10-2009 

Tree Ring Routson, Woodhouse and 
Overpeck, 2011 

co656 

Atlas Mountains Africa 985-
1984 

Tree Ring Esper et al., 2007 morc014 
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Choctawhatchee River North 
America 

993-
1992 

Tree Ring Stahle et al., 2012 fl001 

Lee’s Ferry North 
America 

760-
2005 

Tree Ring Meko et al., 2007 ut529 

Colorado River North 
America 

985-
1984 

Tree Ring MacDonald, Kremenetski 
and Hidalgo, 2008 

nv516 

Sacramento River North 
America 

997-
1996 

Tree Ring MacDonald, Kremenetski 
and Hidalgo, 2008 

or062 

Albermarle Sound North 
America 

934-
1985 

Tree Ring Stahle, Burnette and 
Stahle, 2013 

va021 

Law Dome Snowfall Antarctica 
17-2016 

Ice Core 
Accumulation 

Jong et al., 2022 NA 

Roosevelt Island Antarctica 
13-2012 

Ice Core 
Accumulation 

Winstrup et al., 2019 NA 

West Antarctic Ice 
Sheet Divide 

Antarctica 
8-2007 

Ice Core 
Accumulation 

Sigl et al., 2016 NA 

SPICE Snowfall  Antarctica 
15-2014 

Ice Core 
Accumulation 

Winski et al., 2019 NA 

Quelccaya Ice Core South 
America 

683-
2009 

Ice Core 
Accumulation 

Thompson et al., 2013 NA 

Law Dome Sea Salt Antarctica 7-2016 Ice Core Na Jong et al., 2022 NA 

DF01 Antarctica 607-
1903 

Ice Core Na Motizuki et al., 2017 NA 

DFS10 Antarctica 10-2009 Ice Core Na Sigl et al., 2014 NA 

DML05 Antarctica 150-
1998 

Ice Core Na Traufetter et al., 2004 NA 

DML07 Antarctica 454-
1996 

Ice Core Na Traufetter et al., 2004 NA 

DML17C98_33B33 Antarctica 0-1996 Ice Core Na Traufetter et al., 2004 NA 

NUS072 Antarctica 336-
1993 

Ice Core Na Pasteris et al., 2014; Sigl et 
al., 2014  

NA 

NUS075 Antarctica 
0-1982 

Ice Core Na Pasteris et al., 2014; Sigl et 
al., 2014 

NA 

NUS077 Antarctica 
8-2007 

Ice Core Na Pasteris et al., 2014; Sigl et 
al., 2014 

NA 

NUS085 Antarctica 346-
2000 

Ice Core Na Pasteris et al., 2014; Sigl et 
al., 2014 

NA 

SP01 Antarctica 905-
2000 

Ice Core Na Budner and Cole-Dai, 
2003 

NA 

SP04C5 Antarctica 176-
2004 

Ice Core Na Ferris et al., 2011 NA 

SPICE Sea Salt Antarctica 15-2014 Ice Core Na Thomas et al., 2023 NA 
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TD05 Antarctica 542-
1986 

Ice Core Na Severi et al., 2017 NA 

WDC06A Antarctica 5-2004 Ice Core Na Sigl et al., 2015 NA 

 

Note that for records longer than 2000 years, analysis was only conducted on the most recent 

2000 years, in line with various PAGES2K projects (Emile-Geay et al., 2017).  

 

3.3.2 A cautionary note on the use of proxy data for stochastic model evaluation 

In using proxy records as a substitute for observed climate data when evaluating stochastic 

models, two key assumptions are made: 

1. There are no systematic biases in the proxy record with respect to hydroclimate. 

2. The various pre-processing steps involved in the creation of proxy records do not distort 

the underlying climate signal.  

 

Any violation of these assumptions would confound subsequent inferences about stochastic 

model performance and climate risk. Although the proxy data types used in this study (i.e. tree 

rings and ice cores) undeniably contain information about historic climate variability, potential 

violations of both assumptions will now be discussed.  

 

Regarding tree-rings and assumption (1), there are numerous confounding factors that can bias 

the relationship between tree-ring width and hydroclimate. For example, age-related trends 

(i.e., the tendency for younger trees to produce wider rings) must be accounted for prior to any 

climate inference via a process of tree-ring standardisation. Standardisation,  which is required 

when extracting climate information from tree-rings, can also remove information about low-

frequency climate variability and introduce additional uncertainty in the proxy-climate 

relationship (Büntgen et al., 2021; Cook et al., 1995). Aside from age-related trends, integration 

of climate conditions over multiple years (Meko, 1997, p. 199), low-frequency variations 

arising from stand dynamics and canopy competition (Cook, 1985), and confounding 

temperature signals (Franke et al., 2013b; Ludescher et al., 2020; Yuan et al., 2021) can result 

in tree-ring records displaying greater persistence than corresponding hydroclimate (note that 

temperature exhibits larger persistence than hydroclimatic variables).     

 

To remove the increased persistence in tree-ring records a statistical technique called pre-

whitening is often used. Pre-whitening involves fitting an autoregressive model to the tree-ring 
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record and using model residuals for subsequent analysis (Hamed, 2009; Yue et al., 2002). 

However, pre-whitening will remove low-frequency climate information. For example, Razavi 

and Vogel, (2018) demonstrated that pre-whitened tree-ring width series will underestimate the 

magnitude and duration of droughts/pluvials. Iliopoulou et al. (2018) also demonstrated that, 

compared with instrumental data and other proxy records, pre-whitened tree-ring records had 

consistently lower Hurst coefficients (indicating less persistence). Therefore, pre-whitened 

chronologies should be viewed as a record of high-frequency, interannual climate variability.    

 

In essence, when using tree-ring records for stochastic model evaluation, it is important to note 

that (a) tree-ring records may have higher persistence than corresponding hydroclimate and (b) 

attempts to remove this higher persistence can also remove low-frequency climate information. 

These issues have clear implications for this study.   

 

Even with these factors, all tree-ring records used in this study have been used to reconstruct 

hydroclimate, with the corresponding standardisation method peer reviewed. Furthermore, all 

study records are comprised of either multiple chronologies or numerous tree samples, meaning 

that a coherent and replicated hydroclimatic signal was identified. Also, the tree-ring records 

used in this study were produced using various statistical methods. At the very least, this 

accounted for the methodological uncertainties introduced by pre-processing and, for this 

study, a “good” stochastic model should be robust to this uncertainty.  

 

Compared with tree-ring records, systematic biases and potential pre-processing issues in snow 

accumulation records have been less explored. Nevertheless, several caveats should be 

mentioned when using snow accumulation as a proxy for hydroclimate. For example, wind 

deposition and erosion of initial snowfall can confound a regional snowfall signal (Thomas et 

al., 2017). This can be overcome by taking measurements from multiple ice cores across a 

region and calculating a composite accumulation record, averaging deposition and erosion 

disturbances (Wang et al., 2017). However, it’s typically infeasible to drill multiple ice cores 

that contain millennium-scale information. Therefore, when drilling an extended core, 

additional, shorter cores that cover the instrumental-period are often drilled to evaluate the 

regional consistency of the extended core.   

 

The advection and thinning of ice core layers over time can also confound inferences about 

pre-instrumental hydroclimate. However, ice core drilling sites with minimal advection are 

https://www.zotero.org/google-docs/?IY5Euc
https://www.zotero.org/google-docs/?IY5Euc
https://www.zotero.org/google-docs/?meh3Ur
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typically chosen. In contrast, ice core thinning (occurs due to downward pressure from recent 

snowfall and horizontal movement of the ice sheet (Dansgaard and Johnsen, 1969)), is often 

corrected via a mathematical model. Model choice can influence subsequent proxy 

measurements. However, relative to the magnitude of hydroclimatic variability suggested by 

ice core records, these differences are small (Roberts et al., 2015), and thinning is negligible 

for the first few centuries of the ice core.  

  

Unlike tree-rings and ice accumulation, the links between ice core Na+ and hydroclimate have 

not been explored in detail (Thomas et al., 2023). Ice core Na+ is initially wind-scoured from 

the open ocean or from ‘frost flowers’ (brine crystals) formed on the surface of sea ice. The 

sea salt aerosol is then deposited at the ice core site, primarily via snowfall (but with some dry 

deposition) (Wolff et al., 2006). This makes wind and atmospheric circulation a mediating 

variable between ice core Na+ and hydroclimate. Naturally, there are many local and 

broad-scale physical processes that can influence wind and atmospheric circulation, which may 

influence the wind-mediated sea salt aerosol production, transport and deposition. For example, 

global temperature will change the moisture holding capacity of the atmosphere (Visser et al., 

2022; Wasko and Sharma, 2015; Westra et al., 2013). Higher temperatures can lead to 

increased moisture holding capacity and rainfall, which in turn removes aerosols (e.g. Na+) 

from the atmosphere before they can reach Antarctica (Markle et al., 2018). This highlights 

that variability in Na+ records can contain a complex mix of different signals (similar to 

tree-rings).  

 

Despite the multiple, non-hydroclimatic factors that can influence ice core Na+, recent studies 

have also demonstrated clear links between some Na+ records and regional rainfall. For 

example, Southern Ocean synoptic systems are quite large, spanning from Antarctica to the 

mid-latitudes (Udy et al., 2021). Some commonly occurring Southern Ocean synoptic systems 

are conducive to increased (reduced) salt deposition in east Antarctic and increased (reduced) 

rainfall in east Australia (Udy et al., 2022). This highlights that Na+ is a potentially reasonable 

proxy for past hydroclimate. The potential for Na+ to be a reasonable hydroclimatic proxy, 

combined with a lack of alternative long-term Southern Hemisphere proxy records, were the 

key reason for the inclusion of Na+ records in this study.  

 

It is important to emphasise that despite the issues associated with different proxy types, proxy 

records are the best available source of information we have for understanding long-term 

https://www.zotero.org/google-docs/?fimJsh
https://www.zotero.org/google-docs/?3sOuyo
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climate variability. Multiple lines of evidence from different proxies indicate that 

pre-instrumental climate, and by extension future climate, may be very different to instrumental 

climate. Therefore, to better understand potential climate risks to water security, it is important 

to study proxy variability within a climate risk and water management context. Evaluating 

stochastic model performance using proxy records is just one way to do so.  

 

3.4 Stochastic Models 
There are a wide variety of stochastic models that can be used to simulate timeseries. In this 

study, we validated a small - but representative - subset of these models. The broad classes of 

assessed models were Autoregressive Moving Average (ARMA) models, long-term 

persistence models (also referred to as the Autoregressive Fractionally Integrated Moving 

Average models, or ‘ARFIMA’), Hidden Markov models; non-parametric models, Symmetric 

Moving Average (SMA) models, and “Component-signal ARMA'' models (which will be 

explained in Section 3.5).  

 

Table 3-2 displays the models used in this study. In total, nine different models from six 

different model classes were evaluated. More in-depth descriptions of these models (and the 

corresponding general model class) are included in Sections 3.4.1-3.4.6.  

 
Table 3-2: Stochastic models validated in this study. 

Model Model Class References 

AR(1) or ARMA(1,0) ARMA Box et al., 1970 

ARMA(1,1) ARMA Box et al., 1970 

ARFIMA(0,D,0) Long-term persistence Granger and Joyeux, 1980; 

Hosking, 1984 

ARFIMA(1,D,0) Long-term persistence Hosking, 1984; Montanari et 

al., 1997 

2-State HMM Hidden Markov Visser, 2011 

5-State HMM Hidden Markov Visser, 2011 

KNN bootstrap Non-parametric Lall and Sharma, 1996 

Symmetric Moving Average to 

Anything 

Symmetric Moving Average Koutsoyiannis, 2000; 

Tsoukalas et al., 2018 

Wavelet-Autoregressive Component-signal ARMA Kwon et al., 2007 
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3.4.1 Autoregressive Moving Average (ARMA) models 

Historically, ARMA type models have been used throughout hydrology and water 

management. Originally developed by (Box et al., 1970), these models are essentially linear 

regression models; timeseries values are estimated using weighted sums of previous values 

and/or residuals as weighted predictors. Once a mean estimate is obtained from the regression 

model, random noise (sampled from the regression residual distribution) is added. The 

“autoregressive” in ARMA refers to models which use previous values (i.e., the expected value 

plus a residual) as predictors, whereas “moving average” refers to models which use previous 

residuals. Because various combinations of previous values/residuals can be used as predictors, 

specific types of ARMA model are denoted as ARMA(p,q), with ‘p’ indicating the number of 

previous values used as predictors and ‘q’ denoting the number of previous residuals.  

 

In this study, two different ARMA variants were evaluated - an ARMA(1,0) and an 

ARMA(1,1). The ARMA(1,0), also referred to as an AR(1) or Lag-1 Autoregression model, is 

used commonly in operational water management. Equations for respective models are shown 

below - note that all ARMA models assume the data is normally distributed. 

 

 𝑦𝑡  =  𝜇 +  𝜙(𝑦𝑡−1  −  𝜇)  +  𝜖𝑡 Equation 3-1 

 

 𝑦𝑡  =  𝜇 +  𝜙(𝑦𝑡−1  −  𝜇)  + 𝜃𝜖𝑡−1  + 𝜖𝑡 Equation 3-2 

 

Where:  

 𝜖𝑡 ~ 𝑁(0, 𝜎) Equation 3-3 

 

 

Although it is possible to identify and select ARMA models with higher p/q lags, in this study 

we wanted to focus on ARMA models that have been applied in the water resources industry 

and shown to successfully reproduce instrumental-period hydroclimate. This enabled an 

assessment of whether such model structures are appropriate for use in characterising climate 

risk under observed low-frequency variability.  
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Given that ARMA models assume the data is normally distributed, the marginal distributions 

for each proxy record were tested for normality using the Shapiro-Wilks test prior to parameter 

estimation. If a Shapiro-Wilks test returned a p-value less than 0.05, the data were transformed 

using a Box-Cox transformation (Box and Cox, 1964). The optimal transformation was 

identified via Maximum Likelihood Estimation using the R package ‘forecast’ (Hyndman and 

Khandakar, 2007).  Once replicates of the transformed timeseries were generated, the 

transformation was reversed (which mapped the transformed data back to the original units).  

 

3.4.2 Long-term persistence models 

Considering that current values are estimated as a function of recent previous values, ARMA 

models are sometimes referred to as “short-term persistence” models. However, hydrological 

timeseries typically display dependence across extended time periods (e.g., decades/centuries). 

This dependence has been referred to as long-term persistence, multidecadal/centennial climate 

variability, or the “Hurst phenomenon”. Stochastic models designed to reproduce this 

phenomenon can be loosely classed as long-term persistence models.  

 

Long-term persistence models were initially developed in response to findings by Hurst (1951). 

By studying various extended geophysical timeseries - including Nile River flood maximums 

- Hurst noted a tendency for high/low values to cluster in a way that could not be explained by 

independent and identically distributed random models, nor any periodicity. This was 

subsequently called the Hurst phenomenon.  

 

Since the initial discovery, various mathematical frameworks of the Hurst phenomenon have 

been proposed (Hosking, 1984; Mandelbrot, 1971; Mandelbrot and Wallis, 1969). These 

typically involve estimating a dimensionless constant that describes how timeseries variance 

increases with temporal scale. This constant is sometimes referred to as the “Hurst coefficient”.  

Independent and Markovian timeseries have a Hurst coefficient of 0.5, timeseries exhibiting 

long-term persistence have a Hurst coefficient > 0.5 (Koutsoyiannis, 2002).  

 

Several stochastic models that explicitly model long-term persistence have also been proposed 

since the initial findings of Hurst. These include Fractional Gaussian Noise models 

(Mandelbrot, 1971); non-stationary mean models (Boes and Salas, 1978); Broken-Line models 

(Mejia et al., 1972); and ARFIMA models (Hosking, 1984). For a general history on the 
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discovery of the Hurst phenomenon and the development of associated models, refer to Graves 

et al. (2017).  

 

In this study, the ARFIMA model class was selected as a representative class of long-term 

persistence models. Initially proposed by Granger and Joyeux (1980), ARFIMA models extend 

ARMA type models to also consider long-term persistence. A timeseries yt that cannot be 

modelled as a stationary ARMA process can be fractionally differenced using the following 

equation:  
 

 𝑦𝑡  =  (1 − 𝐵)𝐷 𝑦𝑡   Equation 3-4 

 

Where B is the backshift operator such that: 

 

 𝐵𝑘  =  𝑦𝑡−𝑘  Equation 3-5 

 

And  

 

 
(1 − 𝐵)𝐷  =   ∑ (

𝐷

𝑘
) (−𝐵)𝑘

∞

𝑘=0

 

 

Equation 3-6 

The fractionally-differenced timeseries yt is then modelled as an ARMA(p,q) process with the 

final model structure denoted as ARFIMA(p, D, q) (with D being the fractional differencing 

parameter). Note how the differencing in Equation 3-6 results in the current value being 

explicitly influenced by all preceding values.   

 

In this study, two different ARFIMA model structures were validated - an ARFIMA(0,D,0) 

model and an ARFIMA(1,D,0) model. An ARFIMA(0,D,0) model does not consider any 

short-term timeseries persistence - it only models long-term persistence via the ‘D’ parameter. 

This model is similar to the Fractional Gaussian Noise (FGN) model, although it is derived 

from a slightly different philosophical perspective. The ‘D’ parameter can be used to derive 

the FGN ‘H’ parameter (which also describes long-term persistence) via H=D+0.5 (Graves et 

al., 2017).  

 

https://www.zotero.org/google-docs/?fEBSv7
https://www.zotero.org/google-docs/?fEBSv7
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In contrast to ARFIMA(0,D,0), the ARFIMA(1,D,0) model considers both long and short-term 

persistence (Montanari et al., 1997). Although ARFIMA models with higher p and q lags could 

have been fitted, we elected for the ARFIMA(1,D,0) model to (a) avoid overfitting and (b) 

replicate existing stochastic model evaluations studies.    

 

Models were calibrated and subsequent replicates generated using the R package ‘fracdiff’ 

(Fraley et al., 2012). As with the ARMA models, ARFIMA models assume normally 

distributed residuals. Therefore, a Box-Cox transformation was applied prior to modelling non-

normal proxy records.  

 

3.4.3 Hidden Markov models 

Compared with ARMA-type models, Hidden Markov Models (HMMs) offer an alternative 

approach to modelling interannual and multidecadal climate variability. HMMs are serially 

dependent mixture models; a mixture model means that the data is drawn from multiple 

distributions, each with different parameters (Visser, 2011). The different 

distributions/parameters can be used to represent relative climate state (i.e., wet/dry), and the 

serial dependence between these states is represented by a transition matrix (Thyer and 

Kuczera, 2000). The transition matrix contains the probability that the successor to the current 

value will remain in the same state as the current value, or transition to some other state. 

Transition probabilities can be stationary or time varying (Hughes et al., 1999) and the number 

of states can be user or determined by the (Gershman and Blei, 2012; Lambert et al., 2003).  

 

In this study, HMMs with two and five hidden states were evaluated. Distributions for each 

state were Gaussian, with transition matrices and distribution parameters identified using the 

Expectation Maximisation (EM) algorithm via the R package ‘depmixS4’ (Visser and 

Speekenbrink, 2010).  

 

3.4.4 Non-parametric models 

In contrast to parametric models (such as ARMA/HMMs), non-parametric stochastic models 

make no underlying assumptions about the structure of the data (Lall and Sharma, 1996). This 

makes non-parametric methods suitable for replicating non-stationary time series (Sharma et 

al., 1997). Most stochastic non-parametric models are variants of a K-Nearest Neighbour 

(KNN) bootstrap (Lall and Sharma, 1996; Yates et al., 2003). This bootstrapping approach uses 

a weighted kernel to assign sampling probabilities to the K-nearest neighbours of each 
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observation (with neighbours identified based on Euclidean or Mahalanobis distance). For each 

sample, the successor value is selected based on the successor of the K-nearest samples.  

 

3.4.5 Symmetric Moving Average models 

Symmetric Moving Average (SMA) models are another type of stochastic model. Originally 

proposed by Koutsoyiannis (2000), these models involve two general steps: 

1. Estimating the autocovariance function. Typically, this is done by fitting a Cauchy-like 

distribution to the empirical autocovariance function (ACF) - see Equation 3-7, where 

⍴(t) is the estimated autocorrelation at lag t. These distributions can reproduce a wide 

variety of positive and monotonically decreasing ACFs (typical of hydroclimatic 

timeseries), including those arising from short and long-memory processes.  

 

  𝜌(𝑡)  = (1 +  𝑘𝛽𝑡) −1/𝛽  Equation 3-7 

 

2. Simulating timeseries that preserve this ACF using a symmetric moving average 

generating scheme. Theoretically, this scheme estimates timeseries values as a 

weighted sum of infinite previous/future randomly drawn innovations (these 

innovations can also preserve the mean and skew of the target timeseries). In practice, 

only a finite number of innovations (e.g. 500) are used to estimate timeseries values 

(this only has a slight impact on the ability of the model to reproduce the autocovariance 

function). The innovation weights are estimated from the corresponding ACF, which 

ensures that the ACF is reproduced in subsequent timeseries replicates.  

 

Recent work by Tsoukalas et al. (2018) has enabled the SMA model to be applied to timeseries 

with any marginal distribution/autocovariance structure. This approach initially generates 

timeseries replicates from a standard normal distribution using an SMA generating scheme. 

Then, a Nataf transformation is used to reproduce a desired marginal distribution. Because 

these transformations are non-linear (which distorts the original autocovariance function), the 

ACF of the standard normal distribution being modelled is estimated as a function of the 

desired ACF. As with the original SMA model, the desired ACF can be estimated from the 

observed timeseries. In doing so, the original ACF is reproduced after the Nataf transformation.  
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In this study, we used the SMA model of Tsoukalas et al. (2018). An appropriate marginal 

distribution was selected by identifying Maximum Likelihood parameters from Pearson type 

distributions I-VII and selecting the distribution which returned the smallest Akaike 

Information Criterion (AIC). These distributions were selected because they subsume 

distributions typically used in stochastic modelling (e.g., gamma, normal distribution). After 

an optimal Pearson type distribution was selected, a Cauchy-like function (Equation 7) was 

fitted to the empirical ACF by minimising the Mean Absolute Error. Timeseries replicates were 

then generated using the R package ‘anySim’ (Tsoukalas et al., 2020).  

 

3.4.6 Component-signal ARMA models 

“Component-signal” ARMA models refer to models that decompose a time series into 

orthogonal components, calibrate separate ARMA models to these components; generate 

replicates of these components, and then recombine replicate signals into a final timeseries. By 

modelling both high and low-frequency signals separately, these models are better equipped to 

reproduce low-frequency variability in climate timeseries. These component signals can be 

extracted in several ways, such wavelet decomposition (Kwon et al., 2007; Nowak et al., 2011) 

or Empirical Mode Decomposition (Lee and Ouarda, 2012; McMahon et al., 2008).  

 

In this study, we evaluated the Wavelet-Autoregressive Model (WARM) of Kwon et al. (2007). 

Significant frequencies were identified using a Morlet wavelet transformation (Torrence and 

Compo, 1998). Significant wavelet frequencies were identified by comparing the observed 

global power spectrum with the global power spectrums derived from 1,000 AR(1) replicates 

of the corresponding proxy record. Frequencies were considered significant if they had a p-

value of 0.05 with respect to the AR(1) replicates.  Component signals were then modelled as 

an AR(p) process, with the optimal lag identified using the AIC. In this study, optimal 

parameter values for each lag were identified by maximising the log-likelihood using the 

Nelder-Mead method (Nelder and Mead, 1965).   

 

Some minor modifications from the original method were necessary to improve model 

performance: 

● Initial evaluation found that WARM replicates did not reproduce the skew of the 

marginal distribution. This is because component signals are (a) assumed to be 

orthogonal, resulting in orthogonal timeseries replicates; and (b) the AR(p) model 

assumes a marginal Gaussian distribution. The sum of independent Gaussian variables 
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produces a Gaussian variable (which has a skew of zero). As such, a Box-Cox 

transformation was applied to non-normal proxy records prior to fitting the model, with 

the transformation reversed after replicates were generated.   

● For many low-frequency component signals (which are highly smoothed), calibrating 

high lag AR(p) models typically resulted in optimiser degeneracy. When the optimiser 

did not fail, high lag AR(p) models offered minimal, if any, improvement over more 

parsimonious models.  Therefore, in order to reduce model complexity and simplify the 

model calibration, a forward stepwise selection approach was used. For each 

component signal, this involved iteratively increasing the lag of the AR(p) model being 

fitted and only accepting the model if it produced an Akaike Information Criterion value 

smaller than the previous lag. If not, the current model is selected for subsequent 

replicate generation.   

● In most cases, wavelet signals were not orthogonal (i.e., they were correlated). In such 

cases, recombining correlated component signals assuming independence will produce 

a timeseries with reduced variance (relative to the original timeseries) (Nowak et al., 

2011). To recover this lost variance, the replicate timeseries were scaled to match the 

variance of the original timeseries. Although various multivariate stochastic models 

could explicitly preserve this correlation (and, by extension, the variance of the 

recombined signals), we considered such modifications to the original WARM as too 

extensive for the purpose of this study.  

 

3.5 Methods 
Three different calibration/validation experiments were conducted for all models and proxy 

records. For all experiments, the “instrumental-period” refers to the most recent 100-years of 

the proxy record. This is a simplifying assumption – instrumental records often vary in length 

and the final 100 years of each proxy record may not perfectly overlap with the corresponding 

instrumental record. For each model/record/experiment, 1,000 stochastic replicates of equal 

length to the corresponding validation period were generated.  

 

The following experiments were conducted: 

● Experiment 1: Calibration/validation on the instrumental-period of each proxy record. 

This experiment replicates a stochastic model calibration study where only instrumental 

data is available.  
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● Experiment 2a: Calibration on the instrumental-period of each proxy record, validation 

on the full pre-instrumental period of each proxy record. This experiment identifies 

whether the instrumental-period contains sufficient information for respective models 

to reproduce pre-instrumental low-frequency climate variability. Note that because 

different records have different lengths, validation period lengths are not consistent 

across respective records.  

● Experiment 2b: Calibration on the instrumental-period of each proxy record, validation 

on the most recent 400-years in the pre-instrumental period.  

o Results from Experiment 2 were then contrasted with results from Experiment 

1. This identified whether the high performing models from Experiment 1 were 

also able to reproduce pre-instrumental climate variability.  

● Experiment 3: Calibration/validation on the full proxy record. 

o Results from Experiment 3 were then contrasted with Experiment 1 and 

Experiment 2. This identified (a) if models that perform well during the 

instrumental-period also perform well for longer records and (b) if poor 

performing models from Experiment 2 were able to reproduce low-frequency 

climate variability when provided with more calibration data.  

 

For each experiment, models were evaluated based on their ability to reproduce validation data 

statistics across all proxy records. For each model/record combination, this involved 

calculating the corresponding statistic for each stochastic replicate (i.e., the sampling 

distribution was derived). The percentile rank of the validation statistic was then calculated 

with respect to the stochastic sampling distribution. A statistic was considered reproduced, or 

“captured”, if the percentile rank was greater than 5 and less than 95 (i.e., the statistic was 

within the 90% confidence intervals of the sampling distribution). For each model, the 

proportion of records for which the validation statistic was captured, had a percentile rank < 5 

(indicating that the stochastic model overestimated the statistic), or had a percentile rank > 95 

(indicating that the stochastic model underestimated the statistic) was calculated.  

 

A limited set of statistics was used for model evaluation. These statistics are typically used in 

stochastic model evaluation studies or are related to low-frequency climate extremes; both of 

which are of interest to climate risk analysts and water resource managers. These statistics 

included: 

● Mean 
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● Lag-1 Autocorrelation 

● Standard Deviation 

● Hurst Coefficient 

○ In this study, the Whittle estimator of the Hurst coefficient was used (Beran, 

2017). Although different methods can yield very different Hurst coefficients 

for short timeseries (e.g. 100 values or less), Weron  (2002) demonstrated that 

for timeseries longer than 1000 years this uncertainty is significantly reduced, 

regardless of estimator. As such, this choice is not expected to influence the 

results of Experiments 2a/b and 3 but could influence Experiment 1. However, 

Chapter 2 found that the Whittle estimator is suited for smaller samples.  

● Skew 

● Minimum 

● Maximum 

● Minimum and maximum cumulative sums for overlapping 2, 5, 10, 30, 50, and 100-

year windows.  

○ Due to the limited record length, for Experiment 1 the 50 and 100-year 

minimum/maximum cumulative sums were not used as validation statistics.   

 

A schematic of the method is Figure 3-2, which highlights how results for individual records, 

statistics, and models were aggregated for the different experiments.  
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Figure 3-2: Schematic of method 

 

3.6 Results 

3.6.1 Experiment 1 – Calibrating and validating on the instrumental-period 

Results from Experiment 1 (i.e., calibration/validation on the instrumental-period of the proxy 

records) are shown in Figure 3-3. We can see that all models were consistently able to 

reproduce all statistics. Note that the AR(1) model typically used in water management 

performed well over the instrumental-period.  

 

Although the plot indicates that the KNN model was unable to reproduce the observed 

maximum, this is misleading. Because the KNN model is non-parametric it does not extrapolate 

beyond the calibration period. This means that, in most cases, the stochastic replicate maximum 
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is the observed maximum. The percentile rank is calculated as the proportion of replicate 

maximums greater than or equal to the observed maximum - because the KNN model cannot 

extrapolate, this results in a percentile rank of 1. So even though the model is reproducing the 

maximum, this is not reflected in the percentile rank. This issue is also apparent in Experiment 

3.    

 

 
Figure 3-3: Stacked bar charts showing the proportion of records for which the observed statistic had a percentile 

rank that was either within the 90% confidence intervals (i.e., “captured”) or outside the 90% confidence intervals 

(i.e., percentile rank either < 0.05 or > 0.95) of the stochastic sampling distribution. Numbers in individual bars 

show the proportion of proxy records that, for each statistic, the model either captured or had a percentile rank < 

0.05 or > 0.95 

   

3.6.2 Experiment 2 – Calibrating on the instrumental-period and validating on the pre-

instrumental period 

Results from Experiment 2 (i.e., calibration on the instrumental-period, validation on the full 

pre-instrumental period) are shown in Figure 3-4. We can see that:  

● Validation results are generally poor for all models. Typically, statistics were 

reproduced in <50% of the proxy records analysed.  

● Across all models, the Hurst exponent, Lag-1 autocorrelation, skew, and standard 

deviation were more likely to be underestimated than overestimated.  

● Across all models, minimum statistics were more likely to be overestimated. 
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● Across all models, maximum statistics were more likely to be underestimated.  

 

 
Figure 3-4: Same as Figure 3-3, but for Experiment 2 (i.e. calibration on the instrumental-period of the proxy 

record, validation on the full pre-instrumental period or validation on the most recent 400-year pre-instrumental 

period). 

 

Results from Experiment 2b (i.e., calibration on the instrumental-period, validation on the most 

recent 400-year pre-instrumental period) are also shown in Figure 3-4. As with Experiment 2a, 

validation results were generally poor for all models (although there is a slight improvement 

over Experiment 2a). Again, across all models, maximum statistics were more likely to be 

overestimated than underestimated. However, Experiment 2b differed from Experiment 2a in 

that minimum statistics were not consistently overestimated.  
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3.6.2.1 Assessing proxy records for consistency with pre-instrumental statistics 

Results from Experiment 2 highlight that a stochastic model calibrated to the 

instrumental-period may not simulate pre-instrumental variability. To further explore the 

potential reasons for this result, rolling 100-year statistics were calculated for the proxy pre-

instrumental period. Then, the percentile rank of the corresponding instrumental-period 

statistic was calculated. This allowed instrumental-period statistics to be put into context when 

compared with statistics from the pre-instrumental period.  

 

For Experiment 2, this allowed any poor performance to be explained by either (1) an 

instrumental-period climate regime shift outside the confines of pre-instrumental variability; 

or (2) the inability of models to extrapolate to pre-instrumental climate regimes outside the 

confines of instrumental variability. 

 

The percentile ranks of different instrumental statistics (with respect to pre-instrumental 

statistics) are shown in Figure 3-5. Pre-instrumental statistics predominantly capture 

instrumental statistics. As such, any poor model performance identified in Experiment 2 is 

likely because the stochastic model cannot extrapolate to pre-instrumental climate.  
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Figure 3-5: Summary of instrumental statistic percentile ranks when compared against rolling 100-year 

pre-instrumental statistics.  

 

3.6.3 Experiment 3 – Calibrating and validating on the entire proxy record 

3.6.3.1 Validation Results 

Results from Experiment 3 (i.e., calibration and validation on the full proxy records) across all 

records are shown in Figure 3-6. We can see that: 

 

● ARMA(1,1), ARFIMA(0,D,0) ARFIMA(1,D,0), 5-state HMM, and the SMA models 

performed best with respect to 50 and 100-year extremes, reproducing statistics in 

~80% of records.  

● In contrast, the two-state HMM and AR(1) models performed poorly with respect to 50 

and 100-year extremes. These models typically overestimated minimum statistics and 

underestimated maximum extremes.  
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● All models tended to perform better on minimum statistics than maximum statistics.  

 

Note that the WARM model performed relatively poorly in simulating low-frequency statistics. 

However, to calibrate the AR model to low-frequency wavelet signals (which were very 

smooth and typically monotonically increasing/decreasing for 100s of years), we had to make 

various simplifications. Further work is needed to determine if these simplifications explain 

the relatively poor performance or if the WARM model itself is limited to simulating shorter 

timeseries.  

 

 
Figure 3-6: Same as Figure 3-3, but for Experiment 3 (i.e. calibration and validation on the full proxy record).  

 

3.6.4 Summary of results 

A summary of the results for the different experiments is shown in Figure 3-7. It shows that: 

● All models performed well when calibrated and validated on the instrumental-period 

(Experiment 1). Note that the AR(1) model performed as well as more complicated 

stochastic models.  

● All models performed poorly when calibrated to the instrumental-period and validated 

on the pre-instrumental period (Experiment 2a/b). This poor performance was apparent 

even when the pre-instrumental validation period was reduced to the most recent 400-

years.  
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● When calibrated/validated on the full proxy records, the ARMA(1,1); ARFIMA(0,D,0); 

ARFMA(1,D,0); 5-state HMM; and SMA models performed best, with >80% of 

statistics captured across all records.  

 

 
Figure 3-7: Aggregated results from all experiments, showing the total proportion of statistics captured across all 

records for each model. A statistic was considered ‘captured’ if the percentile rank was >0.05 and <0.95.  

 

Figure 3-8 shows the aggregated results for each proxy type. Of note, we can see that: 

• For Experiment 2a and 2b, stochastic models performed better on tree-ring records than 

ice core accumulation and Na+.  

• For Experiment 3, all stochastic models performed worse on Na+ records than ice core 

accumulation and tree-ring records (except for KNN). 

• The ARMA(1,1) and ARFIMA(0,D,0) models performed well for ice core 

accumulation and tree-ring records (capturing ~85-90% of statistics), but poorly for 

Na+ record (capturing ~55% of statistics).  
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Figure 3-8: Same as, but with aggregated results presented for each proxy type  

 

3.6.4.1 The influence of pre-whitening on validation results 

Although all proxy records contain hydroclimatic information, prior to the analysis some tree-

ring width records were pre-whitened (discussed in Section 2.2). This can influence subsequent 

representations of proxy climate variability (Iliopoulou et al., 2018; Razavi and Vogel, 2018), 

which in turn could influence stochastic model performance. Considering the potential 

influence of pre-whitening on model performance, the aggregated results from each experiment 

for pre-whitened and ‘standard’ tree-ring records are shown in Figure 3-9.  

 

We can see that for Experiments 2a and 2b, models performed better on pre-whitened records. 

This can be attributed to the pre-whitening removing the low-frequency climate variability not 

captured in the instrumental-period. The removal of low-frequency climate variability via pre-

whitening is also apparent in results for Experiment 3. Models with no explicit mechanism for 

reproducing long-term persistence (e.g., AR(1), two-state HMM, and KNN models) performed 

much better on pre-whitened records. This reflects that pre-whitened records contain 

information about high-frequency, interannual variability – which these models can reproduce.    

 

With respect to Experiment 3, the SMA model performed worse on pre-whitened records. This 

is because in some cases the pre-whitened records had negative autocorrelation functions. Our 

implementation of the SMA model is unable to reproduce such autocorrelation functions – only 
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positive, monotonically decreasing autocorrelation functions can be simulated. In contrast, 

non-pre-whitened records had consistently positive autocorrelation functions. The SMA model 

can reproduce these autocorrelation functions, which explains the improved performance on 

non-pre-whitened records.  

 

Finally, although pre-whitening can influence stochastic model performance, note that for 

Experiment 3 the better performing models were the same across pre-whitened and non-pre-

whitened records. This means that, qualitatively, study results were not impacted by including 

pre-whitened records. The only exceptions were the K-Nearest Neighbour and AR(1) models, 

which performed reasonably well for pre-whitened records only.  

 

 
Figure 3-9: Total proportion of tree-ring statistics captured by each model, accounting for pre-whitening of records 

as a pre-processing step. 

 

3.6.4.2 Why did models perform poorly on Na+ records? Some exploratory analysis   

Influence of pre-whitening aside, another interesting result from Experiment 3 is that all 

stochastic models performed poorly on Na+ records (even models that performed well on other 

proxy types, such as ARMA(1,1) - Figure 3-8). Thorough exploration of this poor performance 

requires detailed examination of individual models and records, which is outside the scope of 

this study. However, we did conduct some exploratory analysis comparing key timeseries 

features across proxy records.  
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To inform this exploratory analysis, note that stochastic models aim to replicate a timeseries 

persistence structure and marginal distribution, typically under an assumption of stationary 

variance. For each proxy type, Figure 3-10 compares timeseries persistence via a standardised 

climacogram, marginal distributions via an L-moment diagram, and examines stationary 

variance via a somewhat heuristic measure of timeseries volatility (the specifics of this heuristic 

are explained later).  

 

The climacogram displays the relationship between a timeseries aggregation scale (x-axis) and 

the aggregated timeseries variance (y-axis) – this relationship is a diagnostic for timeseries 

persistence (Dimitriadis and Koutsoyiannis, 2015). When interpreting the standardised 

climacogram, steeper negative slopes indicate shorter-term persistence, whereas flatter slopes 

indicate longer-term persistence. We can see in Figure 3-10 that Na+ records do not have 

noticeably different climacograms to other proxy types. In contrast, we can see that 

pre-whitened tree-ring records had steeper, negative slopes than other proxy types, indicating 

that these records exhibit weaker persistence (consistent with Razavi and Vogel (2018)).  

 

The L-Moment diagram displays the relationship between proxy L-skew and L-kurtosis (note 

that L-moments exhibit less bias than standard probability weighted moment - Vogel and 

Fennessey (1993)). We can see that some Na+ records exhibit much larger L-skew and 

L-kurtosis than other records. Therefore, Na+ records are more likely to have different marginal 

distribution shapes to other proxy records. Note that although the skew and kurtosis of Na+ 

records are quite large, various stochastic models, probability distributions, or transformations 

can handle these features. Different marginal distributions alone may not explain why models 

performed poorly on Na+ records.  

 

Aside from different marginal distributions, visual inspection of Na+ records also suggested 

the presence of timeseries ‘volatility’ (i.e. sudden changes in timeseries variance). This 

volatility is indicative of non-stationary variance – most of the stochastic models we validated 

assume stationary variance. Of note is that the KNN model, which makes no assumption of 

stationary variance, was the only stochastic model which performed better on Na+ records than 

accumulation records.  
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To further explore differences in timeseries volatility, we fitted an Autoregressive Conditional 

Heteroscedasticity (ARCH(p)) model to standardised, differenced proxy timeseries (Engle, 

1982). ARCH(p) models are often used in economics to simulate the non-stationary variance 

of stock prices (large price changes tend to cluster, meaning the variance is non-stationary) 

(Engle and Bollerslev, 1986). These models simulate timeseries variance as a function of prior 

timeseries variance, similar to how ARMA models simulate timeseries values as a function of 

prior values.  

 

For this analysis, we fit an ARCH(1) model to standardised, differenced proxy timeseries. 

Differencing removed any variations in the proxy mean, resulting in a better representation of 

underlying changes in variance.   

 

From Figure 3-10, we can see that some Na+ records returned much higher ARCH(1) 

parameters than other proxy types. This suggests that these records are more likely to have 

non-stationary variance, which violates an underlying assumption of some stochastic models 

validated in this study (e.g. ARMA and ARFIMA models).  

 

The ARCH(1) model results in Figure 3-10 should be viewed with caution. Accurately 

diagnosing and modelling non-stationary variance is more complicated than fitting a simple 

ARCH(1) model to a standardised, differenced timeseries. Instead, this analysis was conducted 

to confirm/refute what was suggested by visual inspection of proxy timeseries (i.e. that some 

Na+ records had non-stationary variance).  
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Figure 3-10: L-Moment diagram (top right), ARCH(1) P parameter of differenced timeseries (top right) and 

climacogram (bottom) for each proxy type 

 

With this in mind, we re-examined Experiment 3, but will all Na+ records removed (Figure 9-2 

in the Appendix), which resulting in substantial improvements in stochastic model performance 

in simulating low-frequency extremes (in particular, the ARMA(1,1), ARFIMA variants, and 

the SMA model).  

 

3.7 Discussion 
In summary the key findings of each experiment were: 

● Experiment 1: The instrumental-period is consistent with an AR(1) process, with the 

AR(1) model reproducing ~95% of evaluated statistics.  

● Experiment 2: Stochastic modelling of the instrumental-period will not capture 

pre-instrumental variability. This result was robust to stochastic model, 

pre-instrumental period, and proxy type. When validated on either the entire 

pre-instrumental period or the most recent 400-year pre-instrumental period, models 

reproduced ~25-50% of evaluated statistics.  

● Experiment 3: When calibrated to the full proxy records, the ARMA(1,1), 

ARFIMA(0,D,0), ARFIMA(1,D,0), five-state HMM, and SMA were the best 

performing models, reproducing ~80-85% of statistics.  
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The key finding from Experiment 1 is consistent with previous studies (e.g., Markonis et al., 

2018; Srikanthan and McMahon, 2001; Sun et al., 2018) which have demonstrated the ability 

of the AR(1) model to reproduce instrumental-period statistics. However, given that results 

from Experiment 3 (which demonstrated that the AR(1) model is unable to reproduce low-

frequency climate variability), such findings can be attributed to short instrumental records 

containing insufficient information to characterise climate variability. Therefore, they struggle 

to properly identify stochastic models that can reproduce this variability. This should not be 

viewed as a criticism of these studies, which were limited to using only instrumental records 

(applications of palaeoclimate proxy data in water management are relatively new 

developments). Rather, it highlights how instrumental measurements are subject to a 

significant sampling bias with respect to low-frequency climate variability.  

 

From a climate risk and water management perspective, results from Experiment 2 are 

particularly concerning. This is because climate risk, and the plans/infrastructure designed to 

be robust under such risk, is typically quantified using a stochastic model calibrated to 

instrumental records. Not only were instrumental-period models unable to reproduce climate 

variability in the full proxy records (which, given the length of these proxy records, may not 

be surprising), they were also unable to reproduce climate variability in the last 500 years.  

 

Considering water authorities are often legally required to provide water during a 

1-in-10,000-year drought, the inability of stochastic models to capture pre-instrumental climate 

is concerning. It indicates that existing water supply systems have been inadequately 

designed/optimised and, crucially, that existing water supply systems are exposed - and 

vulnerable to - much greater climate risk than currently assumed. Further work is needed to 

explore vulnerabilities arising from this misrepresentation of hydroclimatic risk, which will be 

system-specific. However, water supply systems are designed under inherently conservative 

risk estimates.   

 

Although results from Experiment 2 are concerning, a key limitation of the study design is not 

considering parameter uncertainty during model calibration/replicate generation (only a single, 

optimal parameter set was used for each model). For 100-year records, parameter uncertainty 

is large (Thyer et al., 2006) - considering this uncertainty (e.g. through Bayesian calibration 

methods) results in sampling distributions with much larger variance (Berghout et al., 2017). 

This increase in variance may result in pre-instrumental statistics being captured by the 

https://www.zotero.org/google-docs/?PHZ1MP
https://www.zotero.org/google-docs/?PHZ1MP
https://www.zotero.org/google-docs/?TR94gf
https://www.zotero.org/google-docs/?gQgdlm
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instrumental-period model – provided instrumental/pre-instrumental parameters are similar 

(Figure 3-5 suggests this may be the case). However, given (a) the wide variety of different 

stochastic models considered in this study - with some not easily calibrated in a way that 

considers parameter uncertainty, and (b) that typical industry applications of stochastic models 

use a single optimal parameter set, revisiting Experiment 2a/b while considering parameter 

uncertainty is left for future work.  

 

Considerations of parameter uncertainty aside, given that results from Experiment 2 were 

consistent across a wide range of locations regardless of proxy archive type, there is a global 

need to incorporate palaeoclimate information when characterising climate risk and 

designing/adapting water supply systems. Previous incorporations have mainly occurred in 

North America (e.g. Gober et al., 2016; Sauchyn et al., 2015; Tingstad et al., 2014), with these 

studies demonstrating that system adaptation was necessary to meet operational requirements 

under palaeoclimate variability. However, such applications of palaeoclimate data will have to 

address and overcome the various biases and uncertainties introduced when mapping the proxy 

data to rainfall or streamflow - issues that were not relevant to this study because we examined 

the proxy data directly. These biases and uncertainties include, but are not limited to, reduced 

variance in reconstructions relative to the observed climate data (Galelli et al., 2021; Meko et 

al., 2022; Prairie et al., 2008); non-linearities in the climate-proxy relationship (which are not 

accounted for using standard linear models) (Geay and Tingley, 2016; O’Donnell et al., 2021); 

and potential non-stationarity in the climate-proxy relationship (D’Arrigo et al., 2008; Kiem et 

al., 2020).  

 

Considering a need to incorporate palaeoclimate data in water management, Experiment 3 

identified models which may be useful for palaeoclimate-informed stochastic modelling; 

however, these results come with caveats. For example, both the ARMA(1,1) and 

ARFIMA(0,D,0) models reproduced ~85% of statistics across all proxy records but, in most 

cases, produced residuals that were not normally distributed (and, in a few instances, serially 

dependent – see Figure 9-1 in the Appendix). When model assumptions are not met, identified 

model parameters may be biased, uncertainty in model parameters is difficult to quantify, and 

the prediction intervals of the model outputs may be inaccurate (Kavetski et al., 2006). These 

issues would naturally influence the fidelity of climate risk metrics derived from a stochastic 

ensemble. However, in most cases the only residual assumption violation was normality – for 
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linear models, non-normal residuals have minimal impact on parameter bias (Knief and 

Forstmeier, 2021). 

 

Some minor modifications to the ARMA and ARFIMA models may be necessary to ensure 

residual assumptions are met. Such modifications have been discussed extensively in the other 

studies so will only be briefly mentioned here. Potential modifications include:   

● Modifying the likelihood function to remove dependence between the Box-Cox 

parameter and the mean and standard deviation parameters. Thyer et al. (2002) 

demonstrated that a strong dependence between parameters is introduced when 

transforming prior to calibration. Strong dependence between parameters, also referred 

to as collinearity, makes the model hard to optimise and increases parameter 

uncertainty. To remove this dependency, approximate likelihood functions can be used 

(Thyer et al., 2002)   

● Modelling the autocorrelation and skew of the residuals by calibrating an additional 

timeseries model to the residual timeseries (Wang et al., 2012). ARCH type models 

may be particularly useful for modelling skew and non-stationary variance (which may 

improve the poor Na+ record performance).  

● Relaxing the assumption of normally distributed residuals and instead model/draw 

residuals as/from a skewed distribution (Koutsoyiannis, 2000).  

 

The success of the ARMA(1,1) model may be surprising - given that (a) it is a Markovian (i.e. 

short-term persistence, or Lag-1) model and (b) multi-decadal/centennial variability suggests 

long-term persistence is typical for hydroclimatic data (Koutsoyiannis, 2006; Ljungqvist et al., 

2016; Pelletier and Turcotte, 1997). However, numerous studies have shown this model can 

reproduce low-frequency climate variability. Boes and Salas (1978) demonstrated that certain 

ARMA(1,1) parameter combinations produce identical autocorrelation functions to non-

stationary mean stochastic models (i.e. autocorrelations exhibit a power law decay with 

increasing lag, as opposed to the exponential decay typical of short-term persistence). 

Koutsoyiannis and Montanari (2007) also demonstrated that, at an annual scale, the 

ARMA(1,1) model was able to reproduce the Hurst coefficient of an extended temperature 

reconstructions (the model Hurst coefficients ranged from ~0.79-0.83, which is indicative of 

low-frequency variability). However, the ability of the model to reproduce low-frequency 

climate variability was attributed to a sampling size bias. ARMA(1,1) replicates can reproduce 

Hurst coefficients in timeseries that contain several thousand values, however, as the sample 

https://www.zotero.org/google-docs/?EbIHDR
https://www.zotero.org/google-docs/?AmZ1BJ
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size approaches infinity replicate Hurst coefficients go to 0.5 (i.e., a Markovian process). 

Nevertheless, the ability of this model to reproduce annual-scale low-frequency climate 

variability in records that contain several thousand values (and its relative simplicity) indicates 

that this model could still be considered for palaeoclimate-informed stochastic modelling.  

 

Regarding palaeoclimate-informed stochastic model selection, the 5-state HMM, which 

performed well in Experiment 3, has some potential caveats. First, the selection of five hidden 

states is arbitrary and may not be necessary for all records. Non-parametric HMMs, whereby 

no assumptions are made about the number of hidden states, can rectify this issue (Van Gael 

and Ghahramani, 2011). However, for this study, the key motivation for selecting 5 states was 

to see if additional states improve performance over the 2-state model sometimes used for 

instrumental rainfall (Thyer and Kuczera, 2000). Second, HMMs with large numbers of hidden 

states also have many parameters. For instance, the 5-state HMM has ten state parameters (i.e., 

the mean/standard deviation of the corresponding state normal distribution) and a 5x5 state 

transition matrix. Given that more parsimonious models can give similar performance (e.g. the 

ARMA, ARFIMA, and SMA models), the HMM may not be the most appropriate choice for 

palaeoclimate-informed stochastic modelling. As an aside, the principle of model parsimony 

can also be applied to selecting the ARFIMA(0,D,0) model over the ARFIMA(1,D,0) model. 

 

This study also demonstrates the usefulness of proxy records in stochastic model validation. In 

particular, the dataset used in this study provides an opportunity to validate new stochastic 

models using real-word data that has reasonable representations of low-frequency climate 

variability and, in the case of Na+ records, potentially non-stationary variance. Typically, 

stochastic models are either validated using instrumental records, which comes with a sampling 

bias, or using synthetic data, which may not contain realistic examples of climate variability. 

As such, we recommend that newly developed stochastic models are validated/justified using 

proxy data (along with instrumental records and synthetic data).  

 

Aside from stochastic model validation, the dataset used in this study could also help determine 

how much calibration data is needed to (a) reproduce climate variability from a pre-

instrumental period of specific length; and (b) unambiguously identify stochastic model 

parameters. Regarding (a), this can inform the identification/collection of future proxy records 

for use in climate risk analysis (based on the historic risk one wishes to quantify). Regarding 

(b) - this would revisit Thyer et al. (2006), who applied Bayesian methods to synthetic data to 

https://www.zotero.org/google-docs/?unegCA
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identify data lengths needed to produce AR(1) persistence parameter posteriors that did not 

contain zero. Naturally, the same methods/questions can be explored using the proxy dataset 

and appropriate models identified in this study.  

 

These recommendations, and this study in general, have implications for the accurate 

quantification of historic climate risk. However, there is an additional point that needs 

addressing: future climate risk posed by anthropogenic climate change.  

 

Considering atmospheric C02 concentrations and temperatures are increasing to levels for 

which there is no recent analogue, there is debate about whether it is even reasonable to use 

historic risk as a proxy for future risk (Stephens et al., 2020). Rather, future risk may have to 

be quantified using hydroclimatic projections from climate models - not palaeoclimate data. 

However, model simulations of recent hydroclimate are unable to reproduce observed low-

frequency climate variability at regional scales (Rocheta et al., 2017, 2014), nor the drivers of 

low-frequency climate variability such as the Interdecadal Pacific Oscillation (Henley et al., 

2017). This means that palaeoclimate records are currently the best source of information about 

regional low-frequency variability.  

 

Future work should focus on (a) robust characterisation of baseline climate risk using 

palaeoclimate records; then (b) comparison of this risk with risk derived from climate model 

projections, as it is currently unknown whether the climate risk indicated by climate model 

projections is greater or less than the historic baseline risk. Regardless of the limitations and 

uncertainties associated with future projections of rainfall/streamflow under climate change, 

the results from this study indicate that baseline risk has not been properly characterised by 

stochastically modelling instrumental records.  

 

3.8 Conclusion 
In summary, in this study we validated different stochastic models, the main tool used in water 

management for characterising climate risk, using a global network of millennium-length, 

hydroclimatically sensitive proxy records. The key findings of this study are: 

● Instrumental records, which are typically ~100 years in length, contain insufficient 

information to identify stochastic models capable of reproducing low-frequency 

climate variability.  
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● It is likely that a stochastic model calibrated to a 100-year instrumental record will not 

extrapolate to pre-instrumental climate conditions. This means that such models cannot 

properly characterise historic climate risk. Historic risk is often used by in water system 

design and operation as a proxy for future risk. Therefore, water systems have been 

designed and operated under mischaracterisations of risk.   

● When calibrated to the full proxy record, stochastic models capable of reproducing low-

frequency climate variability were identified. These were the ARMA(1,1) model, the 

ARFIMA(0,D,0) model, the ARFIMA(1,D,0) model, the 5-state HMM, and the 

Symmetric Moving Average to Anything model. These models are potential candidates 

for palaeoclimate-informed stochastic modelling.  

 

3.9 Links with following chapters  
Chapter 3 highlights potential limitations with inferring climate risk using a stochastic model 

calibrated to instrumental measurements. Chapter 3 also demonstrates which stochastic models 

are capable of simulating proxy low-frequency, centennial-scale variability, provided sufficient 

calibration data is used. These models are suitable candidates for the palaeoclimate-informed 

stochastic modelling framework proposed in Chapter 6.  

 

Chapter 3 is also used to justify the choice of ARMA(1,1) and ARFIMA(0,D,0) models in 

subsequent chapters. These models were specifically chosen because they are parsimonious 

and can be calibrated using a likelihood function. The likelihood function enables Bayesian 

inference, meaning parameter uncertainty can be quantified and studied in the proxy records. 

However, before examining ARMA(1,1) and ARFIMA(0,D,0) parameter uncertainty in proxy 

records, Chapter 4 examines potential issues with posterior inference on synthetic timeseries 

exhibiting centennial-scale variability.   
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Chapter 4. Inferring stochastic model parameter 

uncertainty under centennial-scale climate variability: the 

role of sampling bias, conditioning error, and likelihood 

approximation  
 

4.1 Abstract 
Quantifying stochastic model parameter uncertainty may be necessary to ensure that climate 

risk estimates derived from stochastic models, which inform water management, are reliable. 

To quantify parameter uncertainty, Bayesian calibration methods (which require a likelihood 

function) are often used. However, accurately quantifying parameter uncertainty with Bayesian 

methods may be difficult because hydrological processes can exhibit centennial-scale 

variability (i.e. long-term persistence). Instrumental rainfall and streamflow records used in 

stochastic model calibration are only ~100-years long; meaning that, with respect to 

centennial-scale variability, instrumental records have a sampling bias. Furthermore, 

conditional and approximate likelihoods are often used (for ease of computation). Under 

centennial-scale variability, the errors associated with the initial conditioning and 

approximation could, potentially, bias parameter inference. Therefore, this study evaluates the 

ability of a sophisticated Bayesian calibration method (the No U-Turn Sampler) to reliably 

infer stochastic model parameter uncertainty from 100-year timeseries using exact and 

conditional, approximate likelihood functions under high persistence (i.e. centennial-scale 

variability) and moderate persistence. Synthetic timeseries were generated using the 

ARMA(1,1) and ARFIMA(0,D,0) models. It was found that, for 100-year high and moderate 

persistence timeseries, exact likelihoods and conditional, approximate likelihoods return 

qualitatively similar posteriors. Furthermore, moderate persistence can be inferred from short, 

100-year timeseries using ARMA and ARFIMA models with conditional likelihoods. For the 

ARFIMA timeseries, high persistence can be inferred from 100-year timeseries, however, this 

posterior will be biased towards underestimating persistence. For the ARMA model, high 

persistence cannot be reliably inferred from 100-year timeseries using the ARMA model (due 

to the complex joint posterior of the persistence parameters). This issue can be alleviated using 

longer timeseries (that contain ~1,000-2,000 values).  
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4.2 Introduction  
In water management and hydrology, stochastic model parameters are inferred from chaotic 

and, in a practical sense, random hydrological timeseries (Koutsoyiannis, 2010; Loucks and 

Van Beek, 2017). Because hydrological timeseries are random, stochastic model parameters 

are in turn random variables subject to uncertainty. Quantifying this parameter uncertainty may 

be necessary to ensure that the climate risk estimates derived from stochastic models, which 

inform water management, are robust (Berghout et al., 2017; Stedinger and Taylor, 1982a).  

 

Bayesian methods are often used to infer stochastic model parameter uncertainty (Bezerra et 

al., 2017; Frost et al., 2007; Thyer and Kuczera, 2000). These methods treat a stochastic model 

parameter as a random variable with a probability distribution, known as the posterior 

distribution. Starting with some probabilistic prior beliefs about parameter values, Bayesian 

inference combines these priors with a likelihood function to calculate the posterior distribution 

(Gelman et al., 2013). This posterior distribution provides a range of plausible parameter values 

and their associated probabilities. Naturally, the fidelity of the posterior distribution is 

dependent on the use of an appropriate likelihood function.  

 

In this study, we examine the influence of various potential confounding factors on accurate 

posterior inference. These factors can be broadly classified as:  

1. Short record sampling bias for timeseries exhibiting centennial-scale variability.  

Hydrological processes can exhibit centennial-scale variability (i.e. long-term persistence) 

(Koutsoyiannis, 2003, 2002). Because most hydrological timeseries are ~100-130 years long, 

they may be too short to properly identify and characterise long-term persistence (Thyer et al., 

2006). This may bias parameter inference. 

 

2. Conditioning error and approximate likelihoods 

For computational efficiency, approximate conditional likelihood functions are used instead of 

exact likelihood functions. For timeseries exhibiting strong serial dependence, the initial 

conditioning error will be substantial (Box et al., 1970). Furthermore, the conditional likelihood 

is also approximated based on a finite number of previous values (Haslett and Raftery, 1989). 

This means that the conditional likelihood is subject to (a) an initial ‘conditioning’ error and 

(b) a potential ‘approximation’ error. This may bias parameter inference.    
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3. Timeseries models typically assume that the data is normally distributed, hydrological 

timeseries are often skewed 

For example, Autoregressive Moving Average (ARMA) and Autoregressive Fractionally 

Integrated Moving Average (ARFIMA) models assume that model errors are normally 

distributed (Box et al., 1970). Because hydrometereological timeseries are typically skewed, 

they are transformed prior to calibration (Srikanthan and McMahon, 2001). This transformation 

introduces a strong correlation between the power transformation parameter and the 

transformed mean and standard deviation, which makes it hard to properly explore the posterior 

space (Thyer et al., 2002). To remove this dependence, first-order approximations of the mean 

and standard deviation can be used when estimating the likelihood (Thyer et al., 2002). This 

may bias parameter inference. 

 

To properly identify and disentangle the relative influence of these confounding factors, in this 

study stochastic model posteriors are inferred from synthetically generated timeseries. Two 

parsimonious stochastic models capable of simulating a wide variety of persistence structures, 

the ARMA(1,1) model and the ARFIMA(0,D,0) model, are used. These timeseries are 

generated from an underlying ‘true’ ARMA or ARFIMA model, which removes the need to 

consider alternative model hypotheses.  

 

4.3 Stochastic models 
The ARFIMA(0,D,0) and ARMA(1,1) models were used in this study. These models were 

selected based on Chapter 3, which found that these models can reproduce centennial-scale 

variability when calibrated to extended, hydrologically sensitive timeseries.  

 

For a timeseries y of length n, both the ARMA(1,1) and ARFIMA(0,D,0) models represent 

individual observations at time t as a conditional mean ȳt  plus a normally distributed residual 

εt with zero mean and variance 𝞂2
ε 

 

 𝑦𝑡  = 𝑦
𝑡

 + 𝜖𝑡 

 

Equation 4-1 

 𝜖𝑡 ~ 𝑁(0, 𝜎𝜖
2) Equation 4-2 
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For the ARMA(1,1) model, the conditional mean is calculated as:  

 

 𝑦
𝑡
|yt−1, ϵt−1  =  μ +  ϕ(yt−1 –  μ)  +  θϵt−1 

 

Equation 4-3 

 

Where 𝝁 is the timeseries mean, 𝞍 is the lag-1 autoregressive parameter, and 𝝷 is the lag-1 

moving average parameter. For a stationary ARMA(1,1) model, both 𝞍 and 𝝷 are restricted to 

values between -1 and 1.  

 

For the ARFIMA(0,D,0) model, the conditional mean can be calculated as: 

 

 
y

t
|ϵt−1, … , ϵt−k  = μ + ∑ a(k)ϵt−k

∞

k=1

  

 

Equation 4-4 

 

Where 

 

 
𝑎(𝑘)  =  

𝛤(𝑘 + 𝐷)

𝛤(𝑘 + 1)𝛤(𝐷)
 

Equation 4-5 

 

However, as k →∞, we can approximate the weights a(k) as: 

 

 
𝑎(𝑘) ~ 

1

𝛤(𝐷)
𝑘𝐷−1 Equation 4-6 

 

Considering all previous timeseries values when estimating the conditional mean can 

significantly increase calibration time. To reduce calibration time, when estimating the 

conditional mean, the number of previous weights considered can be reduced to 100 (following 

Haslett and Raftery (1989)). This results in a conditional mean approximated as:  

 

 
y

t
|ϵt−1, … , ϵt−k  = μ + ∑ a(k)ϵt−k

min(100,t)

k=1

  
Equation 4-7 

For stationary models, D is restricted to values between -0.5 and 0.5.  
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For both the ARMA and ARFIMA models, the likelihood of some parameter set 𝝷p can be 

calculated as the product of conditional likelihoods:  

 

 
P(θp| y)  ∝  ∏

n

t=2

yt
λ−1 ∗ N(y

t
, σϵ

2, lb, ub)  
Equation 4-8 

 

The prior errors used to calculate each ȳt are derived by yt-k - ȳt-k. To infer the error at t1, we 

assume that the error at t0 is 0 and that ȳ1 = µ. For timeseries exhibiting long-term persistence, 

this initial conditioning error will propagate and influence many future estimates of the 

conditional mean.     

 

For both the ARFIMA(0,D,0) and ARMA(1,1) models, the likelihood is calculated assuming 

the data is normally distributed. However, hydroclimatic data typically have skewed marginal 

distributions and a finite lower bound of zero (i.e., are non-normal). To remove this skew prior 

to model calibration, the timeseries can be transformed via the parametric Box-Cox 

transformation (Box and Cox, 1964).  

 

 
𝑖𝑓 𝜆 ≠ 0: 𝑧𝑡  =  

𝑦𝜆
𝑡

− 1

𝜆
 

𝑖𝑓 𝜆 =  0: 𝑧𝑡  =  𝑙𝑜𝑔(𝑦𝑡) 
Equation 4-9 

 

This approach requires inference on the additional Box-Cox parameter, plus additional 

approximations to account for the dependence between the Box-Cox transformation and the 

sample mean and standard deviation. The modified likelihood for both the ARMA(1,1) and 

ARFIMA(0,D,0) models is derived in Section 9.2.1.  

 

4.4 Selection of synthetic timeseries parameters 
The need for a thorough synthetic analysis was, in part, identified by calibrating ARMA and 

ARFIMA models to palaeoclimate proxy records. Various proxy records from Chapter 3 were 

initially calibrated and, in some cases, returned persistence parameters close to the 

non-stationary zone (indicative of high persistence –  see Box et al. (1970)). Figure 4-1 provides 

two examples. In the left column, the ARMA(1,1) model calibrated to the Law Dome sea salt 
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record of Jong et al. (2022). In the right column, the ARFIMA(0,D,0) model calibrated to the 

Southern Finland tree-ring chronology of  Helama et al. (2009). The Law Dome 𝛟 posterior 

had a mode of approximately 0.98, and the Finland D parameter had a mode of approximately 

0.49, both close to non-stationarity (i.e. for ARMA models, 𝛟 or 𝚹 parameters with an absolute 

value > 1 and for ARFIMA models, a D parameter with an absolute value > 0.5).   

 

 
Figure 4-1: Example proxy timeseries, posteriors, and synthetic replicate for two different proxy records. Left 

column: Example from the Law Dome summer sea salt record of Jong et al. (2022), with inferred ARMA(1,1) 

persistence parameters close to the non-stationary zone (i.e. Phi and Theta parameters with an absolute value 

greater than 1). Right column: Example from the Southern Finland tree-ring chronology of Helama et al. (2009), 

with a persistence parameter close to the non-stationary zone (i.e. a D parameter with an absolute value greater 

than 0.5).  

 

Based off this preliminary work, ‘high’ and ‘moderate’ persistence parameters were identified 

for the ARMA(1,1) and ARFIMA models. These parameters were then used in subsequent 

analyses. Note that not all proxy records produced persistence parameters close to the 

non-stationary zone. However, it was a frequent enough occurrence to warrant further 

exploration.  



94 
 

 
Table 4-1: Synthetic model parameters used for this study 

Model Type ARMA(1,1) ARFIMA(0,D,0) 

High Persistence 𝛟 = 0.98, 𝚹 = -0.95 D = 0.48 

Moderate Persistence 𝛟 = 0.75, 𝚹 = -0.5 D = 0.25 

 

The theoretical Autocorrelation Functions (ACFs) for the high and moderate ARMA and 

ARFIMA models are shown in Figure 4-2. For both models, the high persistence parameters 

produce ACFs with high values, even as the lag approaches 100.  Figure 4-2 also highlights a 

key difference between ARMA and ARFIMA models, the ARMA model ACF decays 

exponentially, the ARFIMA ACF decays hyperbolically (Dimitriadis and Koutsoyiannis, 

2015).  

 

 
Figure 4-2: Theoretical Autocorrelation Function for the ARFIMA(0,D,0) and ARMA(1,1) models examined in 

this study (see Table 4-1 for definition of high and moderate persistence). 
 

4.5 Methods 
4.5.1 Inferring posteriors using the No U-Turn Markov Chain Monte Carlo Algorithm 

There are various Bayesian algorithms that can be used to infer posterior distributions – in this 

study, the No U-Turn sampling (NUTS) algorithm (Homan and Gelman, 2014) was used. 

NUTS is an efficient algorithm that can sample from complex posterior distributions. It is a 
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variant of the Hamiltonian Monte Carlo (HMC) algorithm, which automatically adapts to the 

geometry of the target posterior distribution during sampling (Upadhyay et al., 2015). These 

algorithms work by simulating the motion of a particle through a high-dimensional space (each 

dimension corresponds to a parameter of the probability distribution being sampled) 

(Betancourt, 2018). A combination of random and deterministic steps are used to guide the 

particle towards regions of high probability – this ‘guidance’ makes these algorithms more 

efficient than standard random walk/Metropolis sampling algorithms used in Bayesian 

inference (Betancourt, 2018).  

 

For each model calibration, 20,000 posterior samples were taken from eight chains (2,500 

samples per chain, plus a prior 500 samples as a burn-in period). After simulation, the 20th 

sample from each chain was extracted and combined into the final posterior sample. This 

maximised independence between posterior samples (Jones and Qin, 2022). Chains were 

initialised at the calibration data’s sample mean; sample standard deviation; a 𝝺 value of one 

(corresponding to no transformation); and persistence parameters of zero (corresponding to no 

persistence).  

 

4.5.2 Evaluating posterior inference 

To evaluate posterior inference, followed the same general process for different likelihood 

functions and timeseries lengths: 

1. Generate a synthetic timeseries.  

2. Infer posteriors from synthetic timeseries.  

3. Calculate the p-value of the true parameter with respect to each posterior.  

4. Repeat 1-3 20 times to derive a ‘p-value’ distribution.  

 

Over repeated analyses, this p-value should follow a uniform distribution (because the p-value 

under the null hypothesis is uniformly distributed) (Talts et al., 2020). Skewed p-value 

distributions indicate that the posteriors are biased.  

 

Aside from examining the p-value distribution, the number of posteriors where the p-value was 

either outside or within the 90% posterior credible interval was also calculated. The true value 

is expected to lie within the 90% credible interval ~90% of the time (subject to sampling 

uncertainty). This is a less stringent evaluation than p-value uniformity and can indicate 

whether potentially biased posteriors still consistently capture the true parameter.  
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4.5.3 Variations of the likelihood function 

For both the ARMA and ARFIMA models, three different variants of the likelihood function 

were used:  

1. The exact likelihood.  

This involved using known, prior residual errors to calculate the likelihood function from the 

synthetic timeseries. For example, when making inference on a synthetic 100-year ARMA(1,1) 

timeseries, this required a 101-year timeseries to be simulated from pre-generated residual 

errors. The first simulated value and residual error is then used to condition the following 100 

values used in the likelihood calculation. 

    

2. The conditional likelihood.  

The exact likelihood, as described above, assumes that the residual errors prior to the first 

observation are known. These errors are unknown. Although exact likelihood functions that do 

not require known prior innovations exist, calculations are time consuming. Therefore, 

conditional likelihoods are often used to approximate the exact likelihood. This involves 

assuming that (a) the 0th residual error is zero and (b) the 1st conditional mean is equal to the 

unconditional mean, which is then used to estimate the 1st residual error. In this study, the first 

timeseries value was not included in the final likelihood calculation.  

   

3. The truncated conditional likelihood.  

This used the same method as the conditional likelihood, but with the first 10 values removed 

from the final likelihood calculation. This was a heuristic approach to remove biases caused by 

a potentially large initial conditioning error.  

 

4.5.4 Experiment 1: Normally distributed timeseries   

Before assessing the influence of power transformation and parameter approximation on 

posterior inference, we conducted analysis using normally distributed timeseries. This was to 

evaluate posterior inference under ‘ideal’ conditions, without the added complexity of 

timeseries skew and transformation.  

 

The first experiment involved evaluating the different likelihood variants on 100-year 

timeseries, generated from the high and moderate persistence models in Table 4-2. Then, longer 

timeseries were evaluated. For the ARFIMA model, 500-year timeseries were evaluated. 
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Timeseries longer than 500 years were not considered because (a) posterior inference for the 

ARFIMA model was reasonable for these shorter timeseries and (b) calibrating the ARFIMA 

model to longer timeseries is time consuming. In contrast, for the ARMA(1,1) model, we 

evaluated timeseries continuing 500; 1,000; and 2,000 values (reasons for this are explained in 

the Results section).  

 

4.5.5 Experiment 2: Skewed timeseries  

After evaluating posterior inference for normally distributed timeseries, we then examined 

skewed timeseries. This required additional inference on the Box-Cox transformation 𝝺 

parameter. The modified, approximate likelihood function for Box-Cox transformed ARMA 

and ARFIMA models is shown in the Appendix.  

 

For the high and moderate persistence ARMA and ARFIMA models, four different Box-Cox 

𝝺 parameters (0, 0.2, 0.5, and 1) were used to generate a single synthetic timeseries containing 

100; 500; 1,000; and 2,000 values. These 𝝺 are typical of climate timeseries, with a value of 0 

indicating a log transformation and a value of 1 indicating the identity (i.e. no) transformation 

(McInerney et al., 2019). Timeseries had a mean of 5 and a residual variance of 1 (note that 

Box-Cox transformations can only be applied to positive data). Because it was infeasible to 

generate and evaluate 20 timeseries for each persistence parameter, timeseries length, and 𝝺 

combination, a single timeseries was generated for each and results aggregated across model 

persistence and timeseries length.  

 
Table 4-2: Model parameters and timeseries length used to evaluate parameter inference on skewed timeseries. 

𝛍, 𝞂 and persistence 
parameters  Timeseries Length Box-Cox  𝝺 

𝛍 = 5  
 

𝞂 = 1  
 

High Persistence  
 

Moderate Persistence  

100  
500  

1,000 
2,000 

0 
0.2 
0.5 
1 
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4.6 Results 
4.6.1 Results from 100-year analyses  

Results for the 100-year ARFIMA analysis are shown in Figure 4-3. For the moderate 

persistence model, all p-value distributions are approximately uniform. In contrast, for the high 

persistence model, the D parameter p-value distribution is concentrated below 0.5, indicating 

a tendency to underestimate the true D parameter.  

 

 
Figure 4-3: P-value distribution for 100-year ARFIMA analysis. The p-value of the underlying ‘true’ parameter was calculated 

with respect to the corresponding inferred posterior.  
 

For the 100-year ARFIMA analysis, the proportion of p-values within or outside the 90% 

credible interval is shown in Figure 4-4. We can see that, aside from the truncated conditional 

likelihood inference on the mean parameter, the 90% CI consistently contained the true 

parameter.  
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Figure 4-4: Summary of Figure 4-3, with p-values classified as either within the 90% credible interval ('captured') 

or outside the credible interval (i.e having a value < 0.05 or > 0.95). 

 

Results for the 100-year ARMA analysis are shown in Figure 4-5. For the moderate persistence 

model, the mean and SD p-value distributions are approximately uniform for all likelihood 

functions. However, the 𝞍 and 𝝷 p-value distributions indicate a tendency to underestimate 𝞍 

and overestimate 𝝷. For the high persistence model, the posteriors always underestimated 𝞍 

and overestimated 𝝷, regardless of likelihood function.  
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Figure 4-5: Same as, but for the ARMA(1,1) model. 

 

For the 100-year ARMA analysis, the proportion of p-values within or outside the 90% credible 

interval is shown in Figure 4-6. The different likelihood variants returned identical results for 

the high and moderate persistence models. For the moderate persistence model,  the 90% CI 

always captured the true value (note that we would expect 90% CI to capture the true value 

90% of the time, but this experiment was only repeated 20 times, meaning 100% capture is 

possible). In contrast, for the high persistence model, the true 𝞍 and 𝝷 parameters were never 

within the 90% CI. 
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Figure 4-6: Same as, but for the ARMA(1,1) model. 

 

4.6.2 Examining the high persistence ARMA posterior 

Figure 4-7 shows that even with an exact likelihood and a known ‘true’ model, the NUTS 

algorithm was unable to properly explore the persistence posterior space. To better understand 

the persistence posterior space, we enumerated over the 𝞍 and 𝝷 stationary range and inferred 

the joint posterior density for several synthetically generated timeseries (using an exact 

likelihood and setting the mean and residual standard deviation to 0 and 1 respectively). 

  

Several example joint posterior densities for 𝞍 and 𝝷 are shown in Figure 4-7. For the high 

persistence ARMA, joint posterior densities are typically bimodal, peak close to the 

non‑stationary zone, and are not constrained around the true parameter value (spanning across 

the stationary parameter space). Spanning most of the stationary parameter space indicates that 

100‑year timeseries contain limited information about centennial‑scale variability. In contrast, 
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for the moderate persistence ARMA, joint posterior densities are typically unimodal and 

somewhat constrained around the true parameter values.  

 

 
Figure 4-7: Joint posterior density of 𝞍 and 𝝷 for 100-year synthetic timeseries. Exact likelihood values were used, 

with the mean and residual variance set to zero and one respectively. True parameter values are shown in red.   

 

 

4.6.2.1 How much data is needed to identify high persistence ARMA parameters?  

With respect to the high persistence ARMA model, bimodal, largely separated posteriors are 

particularly hard for MCMC samplers to correctly infer (Vrugt et al., 2009). To better explore 

these complicated posteriors, we repeated the Figure 4-5 analysis using exact likelihoods with 

longer timeseries (100; 500; 1,000; and 2,000 years). We also assessed if increasing the NUTS 

acceptance probability (from 0.8 to 0.99) and individual chain length (from 2,500 to 20,000) 

improved posterior inference. For this analysis, note that for longer timeseries we expect any 

likelihood biases caused by the initial conditioning error to be insignificant. Therefore, only 

the exact likelihood was considered.  
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Results from this analysis are shown in Figure 4-8. We can see that: 

● For all parameters and timeseries lengths, the moderate persistence model produced 

approximately uniform p-value distributions.  

● For the high persistence model, longer timeseries improved posterior inference, but the 

p-value distributions still indicate bias.  

● For the high persistence model, running the NUTS algorithm with a higher acceptance 

probability and longer chains did improve posterior inference. However, the p-value 

distributions still indicate bias towards underestimating 𝞍 and overestimating 𝝷.   

 

 
Figure 4-8: P-value distribution for ARMA(1,1) analysis using different timeseries lengths. Exact likelihoods were 

used for all posterior inference. For the ‘High Persistence, Long Chains’ analysis, 8 MCMC chains with 20,000 

iterations were generated. For the ‘High Persistence, Standard Chains’ analysis, 8 MCMC chains with 2,500 

iterations were generated. The ‘Moderate Persistence’ analysis used the same NUTS configuration as the ‘High 

Persistence, Standard Chains’ analysis.   
 



104 
 

 
Figure 4-9: Summary of Figure 4-8 with p-values classified as either within the 90% credible interval ('captured') 

or outside the credible interval (i.e having a value < 0.05 or > 0.95). 
 

4.6.3 500-year ARFIMA timeseries 

Results from the 500-year, high persistence ARFIMA simulation are shown in Figure 4-10. 

The p-value distribution for the D parameter is slightly right skewed, indicating that the 

posteriors typically underestimated persistence. However, for the 500-year ARFIMA analysis, 

Figure 4-11 shows that the posterior 90% CI derived from a conditional likelihood consistently 

contained the true parameter.  
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Figure 4-10: P-value distribution for ARFIMA(0,D,0) analysis for timeseries of length 500. A D parameter of 0.48 

was used. Conditional likelihood functions were used for inference. 
 

 
Figure 4-11: Summary of Figure 4-10 with p-values classified as either within the 90% credible interval 

('captured') or outside the credible interval (i.e having a value < 0.05 or > 0.95). 
 

4.6.4 Skewed timeseries  

For the skewed timeseries, which required inference on an additional transformation parameter, 

results are broadly similar to the normally distributed timeseries. Aggregate results for different 

timeseries lengths and persistence/transformation parameters are shown in Table 4-3 (with four 

combinations of each timeseries length and persistence/transformation parameter), indicating 

that:  
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● For the high and moderate persistence ARFIMA timeseries, the posterior 90% credible 

interval typically contained the true parameter 

● For the high persistence, 100-year ARMA timeseries, the posterior 90% credible 

interval for persistence parameters 𝞍 and 𝝷 did not contain the true value. However, 

for longer ARMA timeseries, the posterior credible interval did contain the true 𝞍 and 

𝝷 values.  

● For the moderate persistence, 100-year ARMA timeseries, the posterior 90% credible 

interval for 𝞍 and 𝝷 typically contained the true value.   

● For all simulations, the posterior 90% credible interval typically contained the true 

Box-Cox 𝝺 parameter. 

 
Table 4-3: Number of 'true' model parameters captured for the skewed, synthetic timeseries. ‘HP’ refers to ‘high 

persistence’ timeseries, ‘MP’ refers to ‘moderate persistence’ timeseries – see Table 4-1.  

  ARMA(1,1) ARFIMA 

  100 500 1,000 2,000 100 500 1,000 2,000 

HP 

𝛍 3/4 4/4 4/4 3/4 4/4 3/4 4/4 4/4 

𝛔 3/4 4/4 4/4 3/4 4/4 3/4 4/4 4/4 

𝝺 4/4 4/4 4/4 3/4 3/4 4/4 3/4 4/4 

𝞍 0/4 3/4 4/4 3/4 NA NA NA NA 

𝝷 0/4 3/4 4/4 3/4 NA NA NA NA 

D NA NA NA NA 4/4 4/4 4/4 4/4 

MP 

𝛍 4/4 3/4 3/4 4/4 4/4 4/4 4/4 4/4 

𝛔 4/4 3/4 4/4 3/4 3/4 4/4 4/4 4/4 

𝝺 3/4 4/4 4/4 4/4 4/4 3/4 3/4 4/4 

𝞍 4/4 4/4 4/4 3/4 NA NA NA NA 

𝝷 4/4 4/4 3/4 3/4 NA NA NA NA 

D NA NA NA NA 4/4 4/4 4/4 4/4 
 

 

4.7 Discussion and Conclusion 



107 
 

This study explored how sampling bias, conditioning error, and likelihood approximation can 

influence posterior inference on synthetic timeseries exhibiting moderate and high persistence. 

It was found that, for 100-year timeseries, approximate conditional likelihoods returned similar 

results to an exact likelihood. It was also found that, for high persistence timeseries, posteriors 

inferred from 100-year periods tended to underestimate the true persistence. In contrast, 

posteriors inferred from moderate persistence timeseries more accurately reflected the 

underlying true persistence.   

 

The key results differed between the ARFIMA and ARMA models. For the ARFIMA model, 

although in many cases the p-value distribution was not uniform, the 90% credible interval 

typically contained the true parameter value (regardless of likelihood function). Therefore, 

even though the NUTS sampler produced biased posteriors, at the very least the 90% credible 

interval is potentially a reliable measure of the ‘true’ parameter. 

 

For the ARMA(1,1) model, long‑term persistence combined with short record sampling bias 

produces posterior distributions that were hard for the NUTS algorithm to explore (irrespective 

of using an exact or conditional likelihood). However, this should not be viewed as a criticism 

of the NUTS algorithm (which, relative to other MCMC samplers, is quite sophisticated). 

Rather, it raises the questions: when inferring stochastic model parameters from a relatively 

short record, what kind of posteriors should we expect? Is it reasonable to expect parameters 

indicative of centennial‑scale climate variability when the calibration data is too short to 

suggest otherwise? And, if the inferred stochastic model parameters accurately reproduce 

various climate statistics, why would we continue looking for alternative parameters? For the 

ARMA model, only longer timeseries provide sufficient information to properly identify 

centennial-scale climate variability.  

 

Model specific results aside, this study highlights the difficulties with inferring climate risk 

from relatively short 100-130-year records, which may be a small sample of a longer-term 

process exhibiting centennial-scale variability. However, several key issues remain.  

 

For these key issues, first consider that (a) a stochastic model calibrated to ~100 years of 

climate data can reproduce a variety of observed climate risk metrics (Markonis et al., 2018; 

Srikanthan and McMahon, 2001), (b) centennial-scale climate variability produces timeseries 

with extended periods above or below some longer-term mean, and (c) water infrastructure 
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planning horizons are typically around 50-100 years (Serinaldi, 2015). Therefore, from a 

practical perspective, the key issue is not whether the posterior contains the ‘true’ parameter. 

Rather, it is whether the posterior produces reasonable estimates of risk over the future planning 

horizon. This will be determined by the rate at which climate varies and the degree to which 

adjacent 100-year periods are similar. For timeseries that vary slowly, perhaps a biased 

posterior is still useful for inferring future risk over a 100-year planning horizon?  

 

With respect to using a stochastic model to infer future climate risk, note that in this study we 

examined stationary models. This may not reflect the real-world behaviour of climate 

processes, particularly under climate change. However, from a climate risk perspective, 

understanding if and how a timeseries may be non-stationary requires an understanding of how 

stationary models behave as they approach non-stationarity. This study suggests that, for 

‘almost’ non-stationary models, parameters will be subject to considerable sampling bias and 

require a very long timeseries to properly identify. For annual-scale ARMA and ARFIMA 

models, this will make identifying non-stationarity from observational records difficult.  

 

Although this study has implications for how stochastic models are used and calibrated in 

climate risk assessment, this analysis was mainly exploratory. Twenty synthetic timeseries is 

an insufficient sample size to draw robust conclusions about posterior bias. For such a small 

sample, it is possible to observe a relatively high proportion of ‘biased’ posteriors (i.e., the true 

value lies on the tails of the inferred posterior). Consider a binomial distribution with a success 

probability of 0.9 (analogous to the chance of a 90% credible interval containing the true 

parameter when the ‘true’ model is known). Assuming a binomial distribution, from a sample 

size of 20 there is an approximately 10% chance that four credible intervals will not contain 

the true parameter value. Although larger samples are desirable, analysing a sufficiently large 

sample of, say, 100 synthetic timeseries was not computationally feasible. Therefore, the key 

conclusions drawn from this analysis are: 

● For high and moderate persistence timeseries, exact likelihoods and conditional, 

approximate likelihoods return qualitatively similar posteriors.  

● Moderate persistence can be inferred from short, 100-year timeseries using ARMA and 

ARFIMA models with conditional likelihoods.  

● High persistence can be inferred from short, 100-year timeseries using the ARFIMA 

model D posterior. However, this posterior will be biased towards underestimating 

persistence.  
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● High persistence cannot be reliably inferred from short, 100-year timeseries using the 

ARMA model, due to the complex joint posterior of the 𝞍 and 𝝷 parameters. This issue 

can be alleviated using longer timeseries (that contain ~1,000-2,000 values).  

●  Skewed timeseries, which required inference on an additional transformation 

parameter, returned qualitatively similar results to normally distributed timeseries.  

 

4.8 Links with following chapters  
Chapter 4 highlights how, even under idealised conditions, stochastic model posteriors can be 

biased. This insight will guide the interpretation of results in Chapter 5 and Chapter 6. For 

Chapter 5, which evaluates stochastic model parameter stationarity using proxy records, 

Chapter 4 can provide a statistical explanation for any potential non-stationarity. For Chapter 

6, which uses an ice core record to guide the calibration of stochastic model persistence, 

Chapter 4 highlights how centennial-scale variability cannot be reliably inferred from short, 

100-year hydrological records.  
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Chapter 5.  Assessing stochastic model parameter 

stationarity over centennial timescales using a global 

network of millennium-length hydroclimatic proxy records  
5.1 Abstract 
Drought risk estimates inform the design of water supply infrastructure and management plans. 

They are typically estimated using statistical timeseries models, called stochastic models, and 

assume model parameters are constant in time (i.e. the stationarity assumption). However, 

validating the stationarity assumption is difficult. This is because instrumental rainfall and 

streamflow records are short. Short records are subject to considerable statistical uncertainty 

(making it hard to identify clear statistical change, even under global warming) and may not 

capture long-term climate variability. Palaeoclimate proxy records, which span 

hundreds/thousands of years, can better assess stationarity because longer record lengths will 

(a) reduce statistical uncertainty; and (b) contextualise if any recent hydroclimatic changes are 

consistent with historic climate variability. Therefore, in this study, stochastic model parameter 

stationarity is assessed using 31 millennium-length hydroclimatic proxy records. Two models 

capable of reproducing low-frequency climate variability - the ARMA(1,1) and 

ARFIMA(0,D,0) models - were examined. It was found that the number of models with at least 

one non-stationary parameter was inconsistent with the stationarity assumption. Furthermore, 

when examining individual model parameters at multi-centennial and millennial timescales, it 

was found that (a) mean and standard deviation were typically non-stationary (b) persistence 

was typically stationary. However, when comparing adjacent 100-year periods, all parameters 

were either stationary or marginally non-stationary. This suggests that, under natural climate 

variability, only recent observations can be used to infer future mean and standard deviation, 

but long-term observations can be used to infer persistence. For the mean and standard 

deviation, this effectively limits the degree to which parameter uncertainty can be reduced by 

calibrating models to longer timeseries, resulting in irreducibly ‘wide’ parameter uncertainty.  
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5.2 Introduction 
Historic drought risk estimates, which inform the design of water supply infrastructure and 

management plans, are typically derived using stochastic models calibrated to instrumental 

measurements (available from ~1900 onwards) (Loucks and Van Beek, 2017). These statistical 

models generate synthetic timeseries with similar statistics to the calibration data. But, by 

accounting for the inherent randomness and persistence of hydroclimatic timeseries, the 

synthetic timeseries contain more severe droughts and pluvials than those recorded via 

instrumental measurements (Matalas, 1967; Srikanthan and McMahon, 2001). This improves 

multi-year drought risk estimates, leading to better informed water management 

plans/infrastructure design (Koutsoyiannis, 2000; Stedinger and Taylor, 1982b; Vogel et al., 

1999). However, is this approach – and the underlying assumptions – valid under climate 

variability and change?  

 

A key assumption underpinning stochastic model calibration – and associated drought risk 

estimates – is one of parameter stationarity (Milly et al., 2008). Parameter stationarity assumes 

that stochastic model parameters are time invariant (Koutsoyiannis and Montanari, 2015; 

Montanari and Koutsoyiannis, 2014). This assumption means that, for the same timeseries, a 

stochastic model calibrated to different time periods should return similar parameters (subject 

to sampling uncertainty). For various reasons (explained below), this assumption has been 

difficult to validate. However, recently developed palaeoclimate proxy records can be used to 

better explore this assumption (Razavi et al., 2015). Therefore, in this study, we will use a 

global dataset of millennium-length hydroclimatic proxy records to assess if stochastic model 

parameters are historically stationary.  

 

Assuming or validating stochastic model parameter stationarity has several issues. First, the 

range of acceptable parameters can be changed by climate shifts (Milly et al., 2008). These 

shifts could be caused by external forcings, both natural and anthropogenic. Natural forcings 

include changes in solar insolation, and anthropogenic forcings include increased radiative 

forcing due to increased C02 emissions (Ait Brahim et al., 2018; Grose et al., 2015, 2020; 

Raspopov et al., 2008). Second, proper/unambiguous identification of stochastic model 

parameters is not possible using short instrumental records because parameter uncertainty is 

large (Patskoski and Sankarasubramanian, 2015; Serinaldi and Kilsby, 2015; Thyer et al., 

2006). This means small/moderate parameter changes cannot be detected (Matalas, 1997). 
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Third, identifying stochastic models that can reproduce long-term climate variability is difficult 

because short instrumental records have limited cycles of multi-decadal climate variability 

(Cook et al., 2022). This makes it hard to determine if a stochastic model calibrated to 

instrumental measurements is producing realistic low-frequency climate variability (Chapter 

3). Any evaluation of stochastic model parameter stationarity should be performed using 

models capable of simulating natural climate variability. These three issues highlight a need 

for longer timeseries to validate (a) whether the instrumental record is representative of the 

longer-term past, and (b) whether stochastic model parameters are consistent across 

multi-centennial timescales.  

 

Because short instrumental measurements cannot properly assess stochastic model parameter 

stationarity, in this study we use alternative sources of data: extended palaeoclimate proxy 

records. These records are derived from climatically sensitive, naturally forming ‘layers’ (e.g., 

tree-rings, ice cores). Because these records span hundreds or thousands of years, they better 

characterise multi-decadal and centennial variability. These records also give evidence for 

droughts and pluvials that cannot be explained by internal variability alone (Ault et al., 2018, 

2014). This is a potential indicator of parameter non-stationarity. Moreover, previous work by 

Razavi et al. (2015) using Canadian tree-ring records also identified non-stationarity in the 

proxy mean and Lag-1 autocorrelation. However, this study was focussed on two statistics for 

one region. There is a need to broadly assess parameter stationarity in the stochastic models 

used by water managers and hydrologists to quantify drought risk.   

 

The need to assess stochastic model parameter stationarity using millennium-length proxy 

records was also noted in Chapter 3, which validated the performance of various stochastic 

models using a global dataset of proxy records. This study found that (i) some models could 

reproduce observed climate variability when calibrated to the full period (i.e., both instrumental 

and pre-instrumental); and (ii) regardless of stochastic model used, ‘instrumental-period’ 

stochastic models were unable to reproduce pre-instrumental climate variability and drought 

risk.   

 

Although Chapter 3 contained a preliminary assessment of statistical stationarity, a more 

rigorous assessment is needed. In this study, a more rigorous assessment was conducted to 

explore whether poor ‘instrumental-period’ stochastic model performance was due to (a) 

parameter non-stationarity between instrumental and pre-instrumental periods or (b) not 



113 
 

considering parameter uncertainty when calibrating to the instrumental-period. We will also 

explore whether stochastic model parameters are stationary across multi-centennial timescales.  

 

Validating or invalidating the stationarity assumption has implications for estimating drought 

risk and, subsequently, determining appropriate water management decisions and 

infrastructure design. Decisions include trigger points for implementing water use restrictions, 

infrastructure design includes determining reservoir size or whether to include desalination. 

These decisions and infrastructure are designed to ensure supply under extreme droughts. 

Stationarity implies that (a) a stochastic model calibrated to the instrumental record can 

properly characterise this drought risk, and (b) historic risk is representative of future risk. 

Parameter non-stationarity in the palaeoclimate record means that future risk is, potentially, 

greater than historic risk (irrespective of global warming). Such non-stationarity would suggest 

that existing water supplies may be more vulnerable than currently assumed and that adaptation 

is required to ensure future water security.  

 

Considering these issues, in this study two research questions will be answered using extended 

palaeoclimate proxy records:  

1. Are instrumental/pre-instrumental stochastic model parameters stationary?  

2. Are stochastic model parameters stationary across multi-centennial timescales?   

Stationarity will be evaluated within a Bayesian calibration framework. For the same proxy 

record, this involves inferring and comparing stochastic model posteriors from different time 

periods.  

 

5.3 Data 
The proxy records used in this study are a subset from Chapter 3, where these records were 

used to evaluate different stochastic models. From the original study, which examined 45 

tree-ring, snow accumulation, and ice core Na+ records, we selected 31 records – removing all 

ice core Na+, except for the Law Dome summer sea salt record. Na+ records were not 

considered in this study because (a) the links between hydroclimate and Na+ are poorly 

understood (except for the Law Dome record) and (b) the presence of non-stationary variance 

in some Na+ timeseries, the cause of which is unknown and not necessarily related to 

hydroclimate.  
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The resultant dataset, shown in Table 5-1 and Figure 5-1, comprises of 31 millennium-length 

proxy records (25 tree-ring records, 5 snow accumulation records, and 1 ice core Na+ record). 

Links between each proxy record and hydroclimate are described in the relevant Table 5-1 

citations.  
 

Table 5-1: Proxy records used in this study 

Record Continent Period 
Analysed Proxy Type Reference ITRDB 

Code 

Dulan, China Asia 159-1993 Tree Ring Sheppard et al., 
2004 chin006 

Delingha, China Asia 1000-2003 Tree Ring Shao et al., 2005 chin050-
chin054 

Uurgat, Mongolia Asia 488-2013 Tree Ring Hessl et al., 
2018 mong042 

Khorgo, Mongolia Asia 15-2014 Tree Ring Hessl et al., 
2018 mong041 

Southern Finland Europe 670-2012 Tree Ring 

Helama, 
Meirläinen and 
Tuomenvirta, 

2009 

finl030-
finl034 

Mount Smolikas, 
Greece Europe 730-2015 Tree Ring Klippel et al., 

2018 
gree013-
gree016 

Flowerpot, Canada North 
America 650-1989 Tree Ring Buckley et al., 

2004 NA 

Whirlpool Point, 
Canada 

North 
America 896-2008 Tree Ring 

Case and 
MacDonald, 

2003 
cana220 

Cedar Knob, USA North 
America 950-1998 Tree Ring Maxwell et al., 

2011 wv005 

Barranca de 
Amealco, Mexico 

North 
America 880-2008 Tree Ring Stahle et al., 

2011 mexi047 

Tavaputs Plateau, 
USA 

North 
America 6-2005 Tree Ring 

Knight, Meko 
and Baisan, 

2010 
ut530 

Mount San 
Gorgonio, USA 

North 
America 651-1998 Tree Ring MacDonald, 

2007 ca051 

Southern Colorado 
Plateau, USA 

North 
America 570-1990 Tree Ring 

Salzer and 
Kipfmuller, 

2005 
az570 

Jemez Mountains, 
USA 

North 
America 824-2007 Tree Ring Touchan et al., 

2011 nm583 

Upper Arkansas 
Basin, USA 

North 
America 216-2007 Tree Ring 

Woodhouse, 
Pederson and 
Gray, 2011 

Multiple 
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Upper Klamath 
Basin, USA 

North 
America 1000-2010 Tree Ring 

Malevich, 
Woodhouse and 

Meko, 2013 
or093 

El Malpais,USA North 
America 5-2004 Tree Ring Stahle et al., 

2009 nm580 

Bear River, USA North 
America 916-2013 Tree Ring DeRose et al., 

2015 ut541 

Summitville, USA North 
America 10-2009 Tree Ring 

Routson, 
Woodhouse and 
Overpeck, 2011 

co656 

Atlas Mountains Africa 985-1984 Tree Ring Esper et al., 
2007 morc014 

Choctawhatchee 
River 

North 
America 993-1992 Tree Ring Stahle et al., 

2012 fl001 

Lee’s Ferry North 
America 760-2005 Tree Ring Meko et al., 

2007 ut529 

Colorado River North 
America 985-1984 Tree Ring 

MacDonald, 
Kremenetski 
and Hidalgo, 

2008 

nv516 

Sacramento River North 
America 997-1996 Tree Ring 

MacDonald, 
Kremenetski 
and Hidalgo, 

2008 

or062 

Albermarle Sound North 
America 934-1985 Tree Ring Stahle, Burnette 

and Stahle, 2013 va021 

Law Dome 
Snowfall Antarctica 17-2016 Ice Core 

Accumulation Jong et al., 2022 NA 

Roosevelt Island Antarctica 13-2012 Ice Core 
Accumulation 

Winstrup et al., 
2019 NA 

West Antarctic Ice 
Sheet Divide Antarctica 8-2007 Ice Core 

Accumulation Sigl et al., 2016 NA 

SPICE Snowfall Antarctica 15-2014 Ice Core 
Accumulation 

Winski et al., 
2019 NA 

Quelccaya Ice 
Core 

South 
America 683-2009 Ice Core 

Accumulation 
Thompson et al., 

2013 NA 

Law Dome Sea 
Salt Antarctica 17-2016 Ice Core Na Jong et al., 2022 NA 
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Figure 5-1: Location of proxy records used in this study. 

 

5.4 Stochastic models 
The Autoregressive Fractionally Integrated Moving Average (ARFIMA) (0,D,0) and 

Autoregressive Moving Average (ARMA) (1,1) models were used in this study. Chapter 3 

demonstrated that these models are (a) able to reproduce low-frequency variability when 

calibrated to millennium-length hydroclimatic proxy records; and (b) unable to reproduce 

low-frequency variability when calibrated (evaluated) on the instrumental (pre-instrumental) 

period of the same proxy records. For more detailed explanations of respective models, refer 

to Chapter 3 and references therein – here we will only give a quick overview of both models.  
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For a timeseries y, both the ARMA(1,1) and ARFIMA(0,D,0) models represent individual 

observations at time t as a conditional mean ȳt  plus a normally distributed residual εt with zero 

mean and variance 𝞂2
ε 

 

 yt  = 𝑦
𝑡

+  ϵt  Equation 5-1 

 ϵt ~ N(0, σϵ
2) Equation 5-2 

 

For the ARMA(1,1) model, the conditional mean is calculated as:  

 

 𝑦
𝑡
|yt−1, ϵt−1  =  μ +  ϕ(yt−1 –  μ)  +  θϵt−1 Equation 5-3 

 

Where 𝝁 is the timeseries mean, 𝞍 is the lag-1 autoregressive parameter, and 𝝷 is the lag-1 

moving average parameter. In stationary mean models, both 𝞍 and 𝝷 are restricted to values 

between -1 and 1.  

 

For the ARFIMA(0,D,0) model, the conditional mean can be calculated as an infinite moving 

average of prior residuals: 

 

 
y

t
|ϵt−1, … , ϵt−k  = μ + ∑ a(k)ϵt−k

∞

k=1

  
Equation 5-4 

 

Where 

 
a(k)  =  

Γ(k + D)

Γ(k + 1)Γ(D)
 

Equation 5-5 

 

However, as k →∞, weights can be approximated as a(k) as 

 

 
a(k) ~ 

1

Γ(D)
kD−1 Equation 5-6 

 

Considering all previous timeseries values when estimating the conditional mean can 

significantly increase calibration time. To reduce calibration time, the number of previous 
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weights considered in the conditional mean estimate can be reduced to 100 (following Haslett 

and Raftery (1989) and Chapter 4), resulting in a conditional mean approximated as:  

 

 
y

t
|ϵt−1, … , ϵt−k  = μ + ∑ a(k)ϵt−k

min(100,t)

k=1

  
Equation 5-7 

 

For stationary models, D is restricted to values between -0.5 and 0.5.  

 

For both models, we were interested in analysing the Autocorrelation Function (ACF), which 

describes the relationship between lagged timeseries values. For the ARMA(1,1) model, the 

ACF is a function of  𝞍 and 𝝷, and for lag k can be written as:  

 

 
𝜌(1) =

(1 − 𝜙𝜃)(𝜙 − 𝜃)

1 + 𝜙2 − 2𝜙𝜃 
 

𝜌(𝑘) = 𝜌(1)𝜙𝑘−1 𝑓𝑜𝑟 𝑘 > 1  
Equation 5-8 

 

For the ARFIMA(0,D,0) model, the ACF for lag k can be written as:  

 

 
𝜌(𝑘) =

Γ(1 − 𝐷)Γ(𝑘 + 𝐷)

Γ(𝐷)Γ(𝑘 + 1 − 𝐷)
 

Equation 5-9 

 

5.5 Methods 
 

5.5.1 Model calibration  

To assess stochastic model parameter non-stationarity, parameter uncertainty must be 

quantified. There are various approaches for doing so. In this study, a Bayesian approach was 

used. Given some observed data, Bayesian methods use a likelihood function to infer a 

distribution of suitable model parameters (called the posterior distribution) (Gelman et al., 

2013). The posterior is explored and quantified using Monte Carlo ‘chains’, which iteratively 

assess the relative likelihood of randomly generated proposed parameters (Brooks, 1998). As 

different proposed parameters are accepted or discarded, the posterior distribution is inferred 

and parameter uncertainty is quantified.  
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5.5.1.1 Inferring stochastic model parameter posteriors  

There are various Bayesian algorithms that can be used to infer posterior distributions – we 

used the No U-Turn sampling (NUTS) algorithm (Homan and Gelman, 2014). NUTS is an 

efficient algorithm that can sample from complex posterior distributions. It is a variant of the 

Hamiltonian Monte Carlo (HMC) algorithm, which automatically adapts to the geometry of 

the target posterior distribution during sampling (Upadhyay et al., 2015). These algorithms 

work by simulating the motion of a particle through a high-dimensional space (each dimension 

corresponds to a parameter of the probability distribution being sampled) (Betancourt, 2018). 

A combination of random and deterministic steps are used to guide the particle towards regions 

of high probability – this ‘guidance’ makes these algorithms more efficient than standard 

random walk/Metropolis sampling algorithms used in Bayesian inference (Betancourt, 2018).  

 

For each model calibration, 20,000 posterior samples were taken from eight chains (2,500 

samples per chain, plus a prior 500 samples as a burn-in period). After simulation, the 20th 

sample from each chain was extracted and combined into the final posterior sample. This 

maximised independence between posterior samples (Jones and Qin, 2022). Chains were 

initialised at the calibration data’s sample mean; sample standard deviation; a 𝝺 value of one 

(corresponding to no transformation); and persistence parameters of zero (corresponding to no 

persistence).  

 

5.5.2 Comparing stochastic model parameter posteriors 

5.5.2.1 Overview of analyses 

Four different analyses were performed to assess stochastic model parameter stationarity across 

different timescales. To simplify comparisons across each proxy timeseries, Analyses 1-3 were 

performed on the most recent 1,000 year period of each record. For the nine records at least 

2,000 years in length, Analysis 4 was performed on the most recent 2,000-year period.  

● Analysis 1: Comparison of instrumental and pre-instrumental stochastic model 

posteriors. For this analysis, the final 100-years of each proxy record was taken as the 

instrumental-period. The 900 years prior were considered the pre-instrumental period.  

● Analysis 2: Split-sample comparison of stochastic model model posteriors. For this 

analysis, each 1,000 record was split into two 500-year halves and compared.  

● Analysis 3: Comparison of 100-year subsets. For this analysis, each record was 

separated into 10 non-overlapping 100-year periods. Adjacent periods were then 

compared.  



120 
 

● Analysis 4: For the 9 records 2,000-years in length, performing a split-sample 

comparison on the most recent and previous 1,000-year periods. Out of the initial 

sample of 31 proxy records, 9 were at least 2,000-years in length.  

 

With respect to Analysis 3, for some records, not all 100-year periods returned a satisfactory 

model calibration using standard priors (i.e. MCMC chains did not mix - Gelman and Rubin 

(1992)). Updating model calibrations for each poorly performing period was not feasible. 

Instead, adjacent 100-year periods where both model calibrations were adequate were 

identified. Out of these periods, 5 from each record were randomly selected for further analysis.    

 

To determine if parameters were stationary, we derived the ‘difference posterior’. The 

‘difference posterior’ was calculated by randomly sampling from corresponding posteriors, 

then subtracting one sample from the other (e.g. for the same record and model, randomly 

sampling from corresponding posteriors derived from different time periods, then subtracting 

one value from the other). When analysing this ‘difference posterior’, the parameter was 

considered stationary if the 90% credible interval contained zero.  

 

For each analysis, record, and model parameter, these general steps were followed to evaluate 

parameter stationarity: 

1. Partition the proxy timeseries into separate calibration periods.  

2. Infer parameter posteriors for each calibration period.  

3. Calculate the difference posterior and its 90% credible interval. If the credible interval 

contained zero, parameters were considered stationary.  

 

Figure 5-2 shows an example method schematic for Analysis 1, using the Law Dome Summer 

Sea Salt proxy record and the ARFIMA(0,D,0) model.  

 

Note that both the ARMA(1,1) and ARFIMA(0,D,0) models have a mean, standard deviation, 

and Box-Cox parameter. However, both models represent persistence using different 

parameters – ARMA(1,1) with ϕ and θ, ARFIMA(0,D,0) with D. Furthermore, the ARMA(1,1) 

ϕ and θ posteriors will be highly correlated. To better compare persistence stationarity across 

both models, the posterior ACF was calculated for both models (using EQUATIONS). 

Persistence non-stationarity was evaluated by comparing the Lag-1, Lag-30, and Lag-100 

posteriors. Results were the same for each ACF lag, so only Lag-1 is presented here.  
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Figure 5-2: Schematic of method. Experiment 1 is given as an example. 

 

For each analysis, we then aggregated the total number of stationary and non-stationary 

parameters across the entire proxy sample. By aggregating results, we can make general 

inferences about stochastic model parameter stationary using the entire proxy sample. For 

example, assuming a null hypothesis of parameter stationarity, for each analysis we can infer: 

1. The expected number of stationary parameters, and whether the proxy sample is 

consistent with this expectation. 
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2. The expected number of stationary models (i.e. all parameters are stationary), and 

whether the proxy sample is consistent with this expectation. We performed this analysis 

to evaluate if there were many proxy records where at least one parameter was 

non-stationary or if there were a small number of proxy records where all parameters were 

non-stationary.  

 

For inference (1), consider two methodological choices. First, we assumed a null hypothesis of 

parameter stationarity. Second, we tested this null hypothesis using the 90% credible interval 

of the posterior difference. Under the null hypothesis, the ‘true’ posterior difference is zero, 

which will lie within the 90% credible interval 90% of the time. Therefore, when aggregating 

results across the proxy sample of size ‘N’, which returned ‘Y’ stationary parameters, we can 

use a binomial distribution (with a ‘success’ probability of 0.9) to estimate the probability of 

observing these ‘Y’ stationary parameters. If that probability is low, we can make more general 

inferences that stochastic model parameters are non-stationary, irrespective of calibration data.  

 

For inference (2), we can also use the binomial distribution to infer the probability of observing 

‘Y’ stationary models (i.e. all parameters are stationary). To do so, we can calculate the 

probability of all parameters being stationary for a single model. This calculation uses a 

binomial distribution with a ‘success’ probability of 0.9 and a sample size of 4; the probability 

that all parameters are stationary is 0.6561. We can use this value of 0.6561 as the ‘success’ 

probability in another binomial distribution, which, for a proxy sample size of ‘N’, calculates 

the probability of observing ‘Y’ stationary models.  

 

Figure 5-3 provides an example for how the sample-scale results were tested for significance 

using a binomial distribution with 0.9 success probability. Note that the proxy sample size of 

31 is only applicable to Experiment 1 and Experiment 2. Experiment 3 contained 155 samples, 

and Experiment 4 contained 9 samples.  
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Figure 5-3: Example of how individual results are aggregated and tested for significance using 

a binomial distribution. 

 

5.5.3 Evaluating model residuals 

Reasonable comparison of model posteriors requires that both ARMA(1,1) and 

ARFIMA(0,D,0) assumptions are met. These models assume that residuals are independent 

(i.e., have no serial correlation or periodicity), have a mean of zero, and follow a normal 

distribution. If these assumptions are violated, estimates of posterior uncertainty may be biased 

(Kavetski et al., 2006), which in turn biases any posterior comparison.  

 

Evaluating model residuals for normality and serial dependence is further complicated by 

posterior uncertainty. Instead of a single residual set to evaluate (as is the case for maximum 

likelihood optimisation), there are several (one residual set for every posterior sample). To 

account for this uncertainty, the following residual diagnostic checks were performed for each 

model calibration:  

 

Residual mean was assessed by calculating the residual mean for each residual set, then 

checking if the 90% credible interval contained zero.  

 

Normality was assessed via a Quantile-Quantile plot (QQplot). These compare the observed 

residual quantiles against the theoretical quantiles for a normally distributed variable. For each 
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observed quantile, 90% credible intervals were calculated. Residuals were considered normal 

if (a) 90% of the theoretical quantiles were within the corresponding observed credible interval 

or (b) the median residual set returned a Shapiro-Wilks test p-value > 0.1.    

 

As a further check on residual normality, we also calculated the L-Skew and L-Kurtosis of each 

residual set. The percentile rank of the theoretical Normal L-skew and L-Kurtosis were then 

calculated. This served as a check on the performance of the Box-Cox transformation, which 

aims to remove skew and does not ensure normality.  

 

To evaluate serial independence, we examined both the residual Lag-1 autocorrelation and 

residual cumulative periodogram. For the Lag-1 autocorrelation, residuals were considered 

independent if (a) the corresponding 90% credible interval contained zero; or (b) if the median 

Lag-1 autocorrelation returned a p-value >= 0.1 for the corresponding Pearson correlation test 

statistic. Check (b) is less rigorous than check (a) but was necessary because, in many cases, 

this posterior contained values close to zero (but not zero).  

 

As a further check on serial independence, we also evaluated periodicity using the residual 

cumulative periodogram. This compares the standardised frequency of the residuals against the 

cumulative spectral power. For white noise (i.e., no periodicity), the cumulative periodogram 

increases by a factor of 0.5 times the standardised frequency. Deviations from this line are 

indicative of periodicity in the residuals. To evaluate periodicity, the 90% credible interval of 

the cumulative periodogram was calculated at each standardised frequency. Residuals were 

considered independent (i.e. no periodicity) if either (a) 90% of the credible intervals contained 

the theoretical white noise line or (b) the median cumulative periodogram returned 

Kolmogorov-Smirnov test p-value >0.1 when compared against the theoretical white noise 

line.   

 

Figure 5-4 shows an example residual diagnostic plot for the Law Dome summer sea salt record 

(Analysis 1). For both periods, the residuals have mean zero, have no periodicity, and are 

approximately normally distributed. For the instrumental period, the Lag-1 autocorrelation is 

zero. For the pre-instrumental period, the Lag-1 autocorrelation is slightly negative, however 

the Lag-1 median is insignificant.   
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Figure 5-4: Example of how residual diagnostics were evaluated in this study. 

 

5.5.4 Study assumptions and potential methodological limitations 

Before presenting and interpreting results, there are some statistical assumptions underpinning 

our analysis that must be discussed first. When evaluating parameter stationarity, the use of 

proxy records, ARMA and ARFIMA models combined with Bayesian calibration methods 

come with three implicit assumptions:  

 

• Assumption 1: That the proxy records contain accurate and relatively unbiased 

hydroclimatic climate information.   

This is an assumption that, to varying extents, must be made for any study using palaeoclimate 

proxy records. To minimise potential biases in the proxy record sample, we selected records 

from peer reviewed articles with demonstrated links to hydroclimate (Chapter 3). However, 

even with this selection approach, there remains a potential for these proxy records to have 
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confounding, non-hydroclimatic signals (e.g. a temperature signal, or an artificial signal 

introduced by statistical processing of raw proxy measurements – see Chapter 3).   

 

• Assumption 2: That the ARMA and ARFIMA models are ‘correct’ models for 

describing annual-scale variability.  

This is an assumption made for any Bayesian inference that does not consider multiple model 

‘hypotheses’ simultaneously (Gelman et al., 2013). Although this is a potentially limited 

assumption, we emphasise that the ARMA(1,1) and ARFIMA(0,D,0) models are capable of 

reproducing realistic annual-scale variability, can reproduce a wide variety of autocovariance 

functions, and are parsimonious (which avoids overfitting). Hence, they were a reasonable 

choice. However, results may differ for other stochastic models. The proxy dataset will be 

made publicly available for those who wish to test other models.  

   

• Assumption 3: For the specified likelihood function, that the Bayesian MCMC 

calibration algorithm, in this case the NUTS algorithm, can adequately explore and 

define the parameter posterior. 

For 100-year samples of a process exhibiting centennial-scale variability, this may not be the 

case. Chapter 4 demonstrated that, for ARMA(1,1) ϕ and θ parameters commensurate with 

centennial-scale variability, the 100-year  joint posterior is highly correlated, spans the -1 to 1 

stationary zone, and bimodal. Such posteriors are difficult to infer, even for the sophisticated 

NUTS algorithm, and the 100-year posterior will probably not contain the underlying ‘true’ 

parameter. Only longer timeseries provide the NUTS algorithm with sufficient information to 

properly explore the ARMA(1,1) ‘centennial-scale variability’ parameter space. In contrast to 

the ARMA(1,1) model, Chapter 4 demonstrated that, for the ARFIMA(0,D,0) model, a 

100-year timeseries was sufficient to infer persistence parameters close to the non-stationary 

zone, but with a tendency to underestimate the underlying true persistence.  

 

Although the ARMA and ARFIMA posteriors may be biased for short samples of a timeseries 

exhibiting long-term persistence, these posteriors are still able to reproduce various climate 

statistics from the calibration period. Therefore, identifying parameter, even for adjacent 

100-year periods, is still a useful heuristic for indicating whether historic observations are 

representative of future risk, particularly water infrastructure planning horizons (which are 

around 30-50 years).  



127 
 

 

In short, even a biased posterior can be useful for inferring climate risk, but this bias means we 

must interpret parameter stationarity or non-stationarity with caution. Any evidence against 

stationarity may not be indicative of some underlying physical changes in hydroclimatic 

processes represented in the proxy records. Centennial-scale variability, ARMA and ARFIMA 

model deficiencies, complex posterior shapes, and limitations with MCMC samplers mean that 

non-stationarity could be inferred from some longer-term stationary process. However, even 

with these limitations, evidence against stationarity will indicate that climate risk - inferred 

from seemingly ‘good’ stochastic models calibrated to historic observations with advanced 

Bayesian methods - may not represent future climate risk.    

 

5.6 Results 
5.6.1 Parameter and model stationarity 

Figure 5-5 summarises the proportion of stationary and non-stationary parameters (top) and 

nonstationary models (bottom) for each analysis and model. The red dashed line corresponds 

to the proportion of stationary parameters or models expected under a null hypothesis of 

parameter stationarity (significance level of 0.1). P-values for each parameter or model are also 

shown.  

 

For Analysis 1, which compared instrumental and pre-instrumental periods, we can see that: 

● For both models, evidence against stationarity in the mean parameter (a p-value of 0.03 

for ARFIMA and 0.01 for ARMA).  

● For both models, marginal evidence supporting stationarity in the standard deviation (a 

p-value of 0.08 for both models) and evidence supporting stationarity in the Box-Cox 

parameter (a p-value of 0.38 for both models).  

● Evidence against stationarity for ARFIMA persistence (a p-value of 0.03), and evidence 

supporting stationarity for ARMA persistence (a p-value of 0.19).  

● For both models, marginal evidence against stochastic models having only stationary 

parameters (a p-value 0.08 for ARFIMA and 0.04 for ARMA).  

 

For Analysis 2, which compared 500-year periods, we can see:  

● For both models, evidence supporting stationarity in the mean parameter (a p-value of 

0.08 for ARFIMA and 0.19 for ARMA).  
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● Marginal evidence against stationarity in the standard deviation for the ARFIMA model 

(a p-value of 0.01) and marginal evidence against stationarity in the standard deviation 

for the ARMA model (a p-value of 0.08)  

● For both models, evidence supporting stationarity in persistence (a p-value of 0.19 for 

ARFIMA and 0.83 for the ARMA). 

● For both models, evidence supporting stationarity in the Box-Cox parameter (a p-value 

of 0.19 for both models).  

● Marginal evidence against all ARFIMA models having only stationary parameters (a 

p-value of 0.04) and evidence supporting ARMA models having only stationary 

parameters (a p-value of 0.24).   

 

For Analysis 3, which compared 100-year periods, we can see:  

• For both models, evidence in favour of stationarity for the mean parameter (a p-value 

of 0.98 for ARFIMA and 0.14 for ARMA) and persistence (a p-value of 1 for ARFIMA 

and 0.99 for ARMA).  

● Evidence support stationarity in the standard deviation for the ARFIMA model (a 

p-value of 0.14) and evidence against stationarity for the ARMA model (a p-value of 

0.01).  

● Marginal evidence against stationarity in the ARFIMA Box-Cox parameter (a p-value 

of 0.09) and evidence supporting stationarity for the ARMA Box-Cox parameter (a 

p-value of 0.79).  

● For both models, evidence that all models are comprised of only stationary parameters 

(a p-value of 0.97 for ARFIMA and 0.35 for ARMA).   

 

For Analysis 4, which compared 1,000-year periods, we can see:  

● For both models, evidence against stationarity in the mean parameter (a p-value of 0.05 

for ARFIMA and <0.01 for ARMA) and standard deviation (a p-value <=0.01 for both 

models).  

● For both models, evidence supporting persistence stationarity (a p-value of 0.23 for 

ARFIMA and 0.61 for ARMA).  

● For both models, evidence supporting stationarity in the Box-Cox parameter (a p-value 

of 0.23 for both models).  

● For both models, evidence against all models having only stationary parameters (a 

p-value of 0.05 for ARFIMA and <0.01 for ARMA).  
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Figure 5-5: Aggregated results for each experiment. ‘Pers’ refers to the theoretical ACF Lag-1 posterior (results 

were the same for other lags). Numbers on each bar show the corresponding P-value. Top: Proportion of non-

stationary parameters across each experiment. Bottom: Proportion of model comparisons with at least one 

non-stationary parameter for each experiment. P-values show the probability of observing the number of stationary 

parameters or models under a null hypothesis of stationarity. The red dashed line shows the 10% significance 

level. 

 

5.6.2 Residual diagnostics 

A summary of residual diagnostics for each model is shown in Figure 5-6. For all analyses, 

residuals typically had a mean of zero and were consistent with white noise (either the Lag-1 

autocorrelation was insignificant or the cumulative periodogram was consistent with white 

noise). However, residuals consistently violated the normality assumption.  
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Figure 5-6: Summary of residual diagnostics for each calibration scenario. 

 

As an additional check of the residual marginal distribution, we examined if residuals were 

normally distributed, skewed, kurtotic, or skewed and kurtotic. This was to evaluate the ability 

of the Box-Cox transformation to remove marginal distribution skew (i.e., it’s intended 

purpose).  

 

A summary of the residual marginal distributions is shown in Figure 5-7. Across all analyses, 

for the most part, the Box-Cox transformation successfully removed marginal distribution skew 

(most residuals were either normally distributed or kurtotic). However, for some analyses (e.g. 

the Analysis 1 pre-instrumental models), many residuals were still skewed.   
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Figure 5-7: Summary of residual marginal distributions, categorised as either Normal, Kurtotic, Skewed, and 

Skewed and Kurtotic. 

 

Even though residual assumptions were not consistently met, linear model parameters (e.g. 

ARMA and ARFIMA) are typically robust to non-normal residuals, especially for the large 

sample sizes in each proxy record (Knief and Forstmeier, 2021). Moreover, that the model 

residuals were typically consistent with white noise is reassuring (residuals with positive serial 

dependence is indicative of underestimated posterior variance).  

 

5.7 Discussion  
In water management, discussions on the stationarity assumption have been ongoing for 

decades (Klemeš, 1989). More recently, Milly et al. (2008) controversially declared that 
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‘stationarity is dead’. In this study, we wanted to explore if, for annual scale stochastic models, 

stationarity was ever really ‘alive’. The answer is dependent on the parameter, time horizon, 

and model. Of particular interest is that, across all analyses, the persistence parameters in both 

models were more likely to be stationary. In contrast, the mean, standard deviation, and Box-

Cox parameters were more likely to be non-stationary. For some time horizons and parameters, 

there was strong evidence for non-stationarity (i.e. a p-value <0.01). However, for others, 

evidence of non-stationarity was marginal. So, is non-stationarity the norm for annual-scale 

stochastic models? Our study suggests ‘probably’.     

 

Marginal evidence against stationarity raises questions as to if and how historic non-stationarity 

should be considered in long-term climate risk modelling. From our perspective, the key issue 

facing climate risk modelling is not removing (or hiding) all stationarity assumptions. Rather, 

when assuming a particular parameter or relationship is stationary, how wrong are we prepared 

to be? This is a somewhat subjective judgement, which depends on (a) the modelling task, (b) 

whether non-stationary models are demonstrably better than a stationary model, and (c) the 

consequences of wrongly assuming stationarity.   

 

From a climate risk perspective, the consequences of wrongly assuming stationarity are, in our 

opinion, most important. This study highlights that, under historic climate variability, (a) 

stochastic model mean and standard deviation posteriors are similar at centennial timescales, 

but not multi-centennial and millennial timescales and (b) stochastic model persistence 

posteriors are similar across centennial, multi-centennial, and millennial timescales. This 

means that under historic climate variability and over a 100-year planning horizon, assuming 

stationarity can still produce reasonable climate risk estimates.  

 

If only ~100 observations can be used to infer future mean and standard deviation over a 

100-year planning horizon, the corresponding stochastic model parameter uncertainty will be 

large (Thyer et al., 2006). This uncertainty, which is unavoidable, should be considered to 

ensure water security under climate variability (Berghout et al., 2017). However, further 

research is needed to better understand the trade-offs between reducing parameter uncertainty 

and accurately estimating future risk. At what point exactly are previous observations, and the 

mean and standard deviation inferred from those observations, no longer representative of 

future observations? 
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In contrast to the mean and standard deviation, results indicate that persistence is likely 

stationary, irrespective of timescale. Further research is needed to explore the source of this 

stationarity. We recommend such research be conducted within the context of how proxies 

respond to and record various scales of hydroclimatic variability (as opposed to immediately 

proposing and evaluating physical climate mechanisms of stationary persistence).   

 

Potentially stationary persistence also suggests that longer hydroclimatic timeseries, such as 

palaeoclimate proxy records, can be used to constrain persistence parameter uncertainty 

without introducing a parameter bias due to non-stationarity (provided the longer timeseries 

accurately records the ‘true’ persistence). Future work constraining persistence parameter 

uncertainty is a key recommendation from this study.    

 

Although the results give marginal evidence against stationarity, stationarity remains an 

important statistical concept that is, perhaps, better served without reference to being ‘dead’ or 

‘alive’. Stationarity is neither alive nor dead. It is an ubiquitous assumption made whenever 

climate risk is modelled statistically.  

 

To some degree, even supposedly non-stationary models, non-parametric models, and 

physically based models will, at some point, assume stationarity (Montanari and 

Koutsoyiannis, 2014). For non-stationary parametric models, even if a model parameter can 

vary in time, the way in which it varies is typically governed by a conditionally stationary 

statistical relationship (unless physical equations are used). For example, stochastic streamflow 

models can incorporate non-stationarity in the mean by adding temperature as a covariate 

(Kiem et al., 2021). However, the relationship between temperature and streamflow is 

conditionally stationary (any non-stationarity is due to non-stationarity in the covariate). 

Non-parametric models (e.g., k-Nearest Neighbour resampling - Lall and Sharma (1996)) also 

implicitly assume stationarity. This is because non-parametric models assume that the 

calibration data accurately describes unobserved data. If the unobserved data is different to the 

calibration data, then the implicit assumption of stationarity is violated. Many complex 

physically based models also assume stationarity. Such assumptions are made via 

parameterised sub-routines (Davini et al., 2017). For example, currently, global and regional 

climate models do not directly simulate cloud convection and rainfall (Evans et al., 2012; 

Huang et al., 2020). These processes are instead parameterised, with parameters held constant 

during simulation (Hong et al., 2006). Although these models are physically based (in the sense 
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that energy and mass is conserved between variables), there are some stationarity assumptions 

within! 

 

Considerations of stationarity aside, this study also highlights some technical limitations of 

using a Box-Cox transformation prior to stochastic model calibration. For many long 

timeseries, model assumptions of normality were often violated (even with a Box-Cox 

transformation). To ensure residual assumptions are met, alternative probability distributions 

that account for skew and kurtosis could be considered (e.g Stedinger (1980)). However, 

because non-normality violations in this study have limited influence on the model parameters 

(Knief and Forstmeier, 2021), alternative distributions should be considered in light of why we 

use the normal distribution. More specifically, in stochastic modelling, using a normal 

distribution for annual data is often justified in terms of (a) the Central Limit Theorem (CLT) 

and (b) statistical convenience.  

 

The CLT states that the sum of random variables converges to a normal distribution as the 

number of random variables being summed increases. Annual data used in this study can be 

viewed as the sum of sub-annual random events (e.g., snowfall or tree-ring growth induced by 

rain). Is the CLT valid for these processes? Issues of considering physical processes such as 

tree-growth and ice formation the outcome of a random process aside, there may not be enough 

sub-annual events for the annual total to be normally distributed. Furthermore, the CLT 

assumes that (a) the random variables are independent (or weakly dependent) and (b) the 

probability of observing different random variables is constant through time. In terms of 

hydroclimatic timeseries (e.g., rainfall, proxy records), neither assumption is likely. These 

timeseries typically exhibit long-term dependence and are influenced by various physical 

processes, such as the El Nino Southern Oscillation, which alter flood and drought likelihood 

(Kiem et al., 2003; Kiem and Franks, 2004). Furthermore, skewed probability distributions can 

be derived by applying the principle of maximum entropy to positively bounded random 

variables (Papalexiou and Koutsoyiannis, 2012). Along with the previously mentioned 

limitations of the CLT, the availability of theoretically rigorous alternative distributions 

suggests that, for annual scale stochastic modelling, the CLT is a poor justification for the use 

of a normal distribution.    

 

This leaves statistical convenience as the primary justification for using a normal distribution. 

Unlike many other distributions, normally distributed variables remain normal when summed 
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or multiplied. For timeseries models, this makes it simple to calculate marginal and conditional 

distributions and likelihoods (Box et al., 1970). Therefore, if considering an alternative 

probability distribution, a trade-off must be considered between the convenience of the normal 

distribution and the added benefits of the alternative distribution.   

 

5.8 Conclusion 
In this study, we evaluated stochastic model parameter stationarity using 31 millennium-length, 

hydroclimatic proxy records. By examining millennium-length records, we could better 

account for parameter uncertainty when evaluating if these parameters are constant in time (i.e. 

are stationary) or if these parameters vary (i.e. are non-stationary). We found that: 

• At multi-centennial and millennial timescales, marginal evidence that the mean and 

standard deviation parameters are non-stationary 

• At centennial scales evidence that the mean and standard deviation parameters are 

stationary.  

• At centennial, multi-centennial, and millennial timescales, evidence that stochastic 

model persistence is stationary.  

 

5.9 Links with following chapters 
Chapter 5 indicates that stochastic model persistence parameters are likely stationary, 

irrespective of timescale. In Chapter 6, this finding is used to inform the development of a 

palaeoclimate-informed stochastic modelling framework. The proposed framework uses ice 

core information to calibrate stochastic model persistence parameters for an annual scale 

stochastic rainfall model in mid-latitude Australia. More specifically, Chapter 5 is used to 

justify using an entire proxy record to define the prior distribution for stochastic model 

persistence parameters. 
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Chapter 6. Using ice core data in drought risk 

assessment and water resource management 
6.1 Abstract 
Palaeoclimate proxy data, such as ice core records, contain more severe droughts and pluvials 

than those in short instrumental rainfall and streamflow records. These proxy records can 

provide better drought risk estimates, which can better inform water management. In this study, 

we present a Bayesian modelling approach for using proxy data in water management. We use 

proxy data from an Antarctic ice core and instrumental measurements from southeast Australia 

to calibrate a catchment-scale stochastic rainfall model (i.e., a type of climate risk model used 

in water management). The proxy data is used to define a Bayesian prior for instrumental 

persistence. This extracts the proxy persistence signal, which is representative of broader 

regional persistence, without using the proxy to predict catchment-scale rainfall. When 

validated, the proposed model reproduces the observed drought risk. However, compared with 

the ‘standard’ model calibrated using a non-informative prior, our ‘palaeoclimate-informed’ 

model simulates much longer and more severe droughts/pluvials. From a water management 

perspective, these extended droughts mean that more water storage is required to meet demand. 

Furthermore, in comparison to existing methods of palaeoclimate-informed stochastic 

modelling, the proposed model also simulates more severe droughts. This study (a) highlights 

significant limitations with using instrumental records to characterise climate risk; and (b) 

presents a flexible framework that incorporates palaeoclimate persistence signals in catchment-

scale drought risk assessment, enabling direct applications of palaeoclimate data in water 

resource management. 
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6.2 Introduction 
In water management, stochastic models calibrated to instrumental rainfall and/or streamflow 

measurements (typically available from ~1900 onwards in Australia) are used to infer drought 

risk (Loucks and Van Beek, 2017). These stochastic models generate synthetic timeseries with 

similar statistics to the calibration data but with different, and potentially more severe, longer 

droughts (Fiering, 2013). Once generated, the synthetic timeseries are used as inputs into a 

water system model (Kuczera, 1992). This simulates water system behaviour under the various 

droughts generated by the stochastic model, which then informs water system operation, 

design, and adaptation (Vogel, 2017). This makes stochastic model calibration a crucial task 

for the design and operation of water supply systems. In this study, a novel calibration 

framework is presented that uses palaeoclimate information to inform and constrain the 

calibration of stochastic model persistence, which subsequently improves the drought risk 

estimates used in water management.  

 

Stochastic models are used because they simulate two key features of hydroclimatic timeseries: 

randomness and persistence. Randomness means that the observed record represents just one 

plausible realisation of a hydroclimatic process (Deser et al., 2020; Koutsoyiannis, 2010; 

Sivakumar, 2000). Alternative, and more severe, realisations are possible. Hydroclimatic 

persistence is the tendency for wet or dry years to cluster in sequence (Graves et al., 2017; 

Hurst, 1951). This means that multi-year droughts are possible. Combined, randomness and 

persistence mean that droughts measured in a ~100-year rainfall or streamflow record are often 

not the worst droughts possible (Cook et al., 2022). By simulating randomness and persistence, 

stochastic models generate time series that contain droughts of greater severity/duration than 

those in the instrumental record (Matalas, 1967; Srikanthan and McMahon, 2001). This allows 

water managers to better characterise, and plan for, a wider range of plausible extreme events 

than that available in a single observational record. 

 

Although stochastic models are useful to water managers, the use of relatively short calibration 

data (i.e., instrumental measurements) gives rise to two limitations. First, short records may 

not capture the full extent of multi-decadal climate variability (Hessl et al., 2018; Mundo et al., 

2012; Vance et al., 2015; Verdon-Kidd et al., 2017). This means an ‘instrumental-period’ 

stochastic model will not reproduce realistic low-frequency climate variability and, by 

extension, underestimate long-term historic drought risk (Chapter 3). Second, short records, 
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such as annual-scale hydrologic records, are subject to considerable parameter uncertainty 

(Serinaldi and Kilsby, 2015). This means a large range of stochastic model parameters produce 

similarly good calibrations (Thyer et al., 2006). Large parameter uncertainty will propagate 

through water system models, resulting in highly uncertain estimates of sustainable yield (i.e., 

the amount of water a system can sustainably provide) (Berghout et al., 2017; Stedinger and 

Taylor, 1982a). Under this uncertainty it is difficult to identify optimal operational rules and/or 

system adaptations. 

 

Potentially, palaeoclimate proxy records can be used to address these limitations. These 

records, which span hundreds of years, are measurements of climate-sensitive physical ‘layers’ 

(e.g., tree-rings and ice cores). Because they are much longer than instrumental measurements, 

proxy records can (a) reduce stochastic model parameter uncertainty (Patskoski and 

Sankarasubramanian, 2015) and (b) contain more severe droughts than those produced by a 

stochastic model calibrated to instrumental measurements. With respect to (b) this suggests 

that existing water supply systems, which were designed to mitigate instrumental-period 

drought risk, may not ensure water supply under historic climate variability (Gober et al., 

2016). This means that to ensure future water supply, adaptation may be required (Armstrong 

et al., 2020; Cahill et al., 2023; Flack et al., 2020). 

 

Given the advantages of proxy records, they should inform stochastic model calibration. In this 

study, a Bayesian method for incorporating palaeoclimate information in stochastic modelling 

is proposed. Proxy records are used to define Bayesian priors, which then inform the calibration 

of a stochastic rainfall model. These ‘palaeoclimate-informed’ stochastic models can better 

characterise long-term drought risk, leading to better-informed water management adaptation 

decisions.  

 

Although potentially useful, proxy records have limitations that complicates their use in 

stochastic model calibration, drought risk assessment, and water management. These 

limitations are:  

1. Most proxy-based climate reconstructions, such as those produced using linear 

regression, underestimate instrumental-period variance (Meko et al., 2022). By extension, 

these reconstructions also underestimate the magnitudes of instrumental-period extremes 

(Patskoski et al., 2015). These statistics are crucial for any drought risk estimate.  
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2. Limited in-situ (i.e., local) proxy data for catchments of interest (Galelli et al., 2021; 

Tingstad et al., 2014). This is a particularly prevalent issue across the mid-latitude Southern 

Hemisphere (Croke et al., 2021; Goodwin et al., 2022; O’Connor et al., 2022). 

  

The proposed paleoclimate-informed stochastic modelling framework addresses these 

limitations. Limitation (1) is addressed by explicitly preserving instrumental-period variance. 

Limitation (2) is addressed by using information from remote hydroclimatic proxies. In this 

study remote ice core proxies are used, which are a major source of palaeoclimate information 

in the Southern Hemisphere.  

 

Ice cores contain particularly useful information to water managers (Kiem et al., 2020). They 

are long and contain relatively unbiased signals of regional persistence (unlike some tree-ring 

records) (Chapter 2). These features are useful because regional persistence, which 

significantly influences water system design and behaviour (Vogel et al., 1999), is poorly 

characterised in instrumental measurements (Thyer et al., 2006). Various studies also 

demonstrate that there is limited spatial variability in regional-scale persistence (Fatichi et al., 

2012; Tyralis et al., 2018, 2018), meaning that ice core persistence can be used as a proxy for 

mid-latitude persistence (Chapter 2). Assuming that regional persistence remains coherent over 

time, ice cores can be used to better infer catchment-scale persistence (irrespective of locally 

available proxies).  

 

Regardless of proxy data used, any palaeoclimate-risk framework must preserve instrumental-

period variances and extremes during calibration. Existing frameworks have done this by using 

proxy data to inform resampling of the instrumental record (Erkyihun et al., 2016; 

Gangopadhyay et al., 2009). Given that different palaeoclimate reconstructions of the same 

region typically agree on relative wet/dry state but disagree on the magnitudes of these wet/dry 

states, these approaches will use palaeoclimate reconstructions (or the proxy record directly) 

to infer wet/dry state (Prairie et al., 2008). Then, a corresponding wet or dry value is sampled 

from the instrumental record. Alternatively, values can be sampled from statistical models 

calibrated to wet or dry instrumental-periods (Henley et al., 2011).   

 

Although these methods preserve variance, the sampled wet or dry values are limited to either 

(a) those contained in instrumental data; or (b) those derived from stochastic models calibrated 

to wet or dry instrumental periods. Regarding (a), this means extrapolation to larger, 
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unrecorded extremes is not possible (such extremes are possible and should be accounted for 

when quantifying drought risk). Regarding (b), given that these wet/dry periods are a subset of 

an already short instrumental record, parameter uncertainty will be substantial. As stated 

previously, large parameter uncertainty will propagate through a water system model, which 

makes it hard to identify optimal management rules and infrastructure (Berghout et al., 2017; 

Stedinger and Taylor, 1982a). Considering these limitations, a palaeoclimate-informed 

stochastic modelling approach that extrapolates to unobserved values while minimising 

parameter uncertainty is desirable.  

 

Given (a) the need to consider palaeoclimate data when calculating drought risk; (b) that certain 

palaeoclimate proxies, such as ice cores, contain realistic and extended samples of regional 

hydroclimatic persistence; and (c) limitations with existing methods of palaeoclimate-informed 

stochastic modelling, in this study we propose a new stochastic modelling framework for using 

palaeoclimate data in drought risk assessment and water management.  

 

In this framework, we initially calibrate a stochastic model to a proxy timeseries. From the 

proxy calibration, we then extract persistence parameter posteriors. Posterior uncertainty is 

small because the proxy record is long. These posteriors are then used to define a Bayesian 

prior distribution for the target catchment rainfall model. This prior is ‘informative’ - it limits 

rainfall persistence parameters to those consistent with proxy low-frequency climate 

variability.  In contrast, catchment rainfall mean and standard deviation priors are 

non-informative. This approach leverages the robust characterisation of low-frequency climate 

variability contained in palaeoclimate records and explicitly preserves the target catchment 

coefficient of variation. This preservation removes issues of variance loss common in standard 

palaeoclimate reconstruction methods. However, unlike existing paleoclimate-informed 

stochastic models, the proposed framework does not subset mean/standard deviation 

parameters into wet/dry states. This will reduce parameter uncertainty.  

 

6.3 General modelling framework 
The proposed modelling framework uses a proxy record to inform catchment-scale stochastic 

model calibration. This requires understanding (a) how different stochastic model parameters 

are sensitive to different features of the calibration data marginal distribution (e.g., mean, 

variance, skew etc.) and persistence/autocorrelation structure; and (b) what information, if any, 
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available proxy records have that can better characterise these features/parameters. This 

involves: 

1. Selection of an appropriate stochastic model (i.e., one capable of reproducing realistic 

climate variability across multi-decadal/centennial scales). We selected the 

ARMA(1,1) model.  

2. Identifying which parameters are sensitive to what features of the calibration data: 

a. The mean (𝝁); residual variance (𝞂); and Box-Cox exponent (𝝺) parameters are 

sensitive to the sample mean, variance, and skew respectively (and any 

corresponding non-stationarities). For the ARMA(1,1) model, 𝞍 and 𝝷 are 

sensitive to the persistence, or autocorrelation, structure of the calibration data 

(𝝺 may also have a minor influence (Montanari et al., 1997)).    

3. Identification of potential palaeoclimate proxy records for catchment and climate 

variable of interest.  

a. For this case study, the catchment of interest was the Williams River catchment 

(Figure 6-1). This is an important water supply catchment for Newcastle - a city 

in southeast Australia. Annual rainfall was the target climate variable.  

b. The summer sea salt record from Law Dome, East Antarctica, was identified as 

a suitable proxy (Figure 6-1). This proxy region is linked to southeast Australia 

by Southern Ocean synoptic systems. Variations in the north and south position 

of Southern Ocean synoptic systems are conducive to increased (decreased) sea 

salt deposition (rainfall) at Law Dome (Williams River). Both locations and 

variables are also influenced by the El Niño Southern Oscillation and the 

Interdecadal Pacific Oscillation, two leading drivers interannual and 

multidecadal global climate variability.  

4. Assessing what proxy record features, if any, contain useful information about the 

target catchment marginal distribution or persistence structure (including potential 

non-stationarities in either).   

a. Ice core records, such as Law Dome, provide relatively unbiased estimates of 

regional (i.e., mid and high-latitude Southern Hemisphere) persistence. For 

mid-latitude catchments, this makes ice core proxies ideal for inferring 

stochastic model persistence.  

b. Due to the physical links between Law Dome and east Australia, this proxy does 

have some skill in predicting east Australian rainfall (statistically significant 
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correlation ~0.30). Such skill could also be accounted for within the general 

modelling framework. For example, the proxy could be used as a stochastic 

model covariate (which would incorporate any proxy non-stationarities in the 

marginal distribution). However, such considerations - which increase the 

complexity of the model - are left for future work.  

5. Formulate Bayesian model whereby ‘useful’ proxy features inform Bayesian priors for 

the target catchment model.  

a. Given that (i) ice cores provide relatively unbiased estimates of regional 

hydroclimatic persistence; and (ii) there is common ENSO signal between Law 

Dome and the Williams River catchment, east Australia, we use ice core data to 

inform the calibration of an annual stochastic rainfall model. The proxy record 

is used to define the Bayesian priors for annual rainfall persistence. This 

involves inferring proxy record persistence posteriors. This posterior is then 

used to select hyperparameters of the rainfall persistence prior. Because the ice 

core record is long, uncertainty in rainfall persistence parameters will also be 

reduced considerably. 

 

Although this study uses a remote ice core record to calibrate stochastic model persistence 

parameters, the general concept can be extended to other proxies/parameters. However, we 

focussed on stochastic model persistence because (a) hydroclimatic persistence has a 

significant influence on the design and operation of water supply systems, (b) there is 

considerable uncertainty in persistence statistics and parameters inferred from short 

instrumental records (Chapter 4), and (c) stochastic model persistence parameters are 

dimensionless (meaning that proxy persistence can be transferred to rainfall persistence without 

a unit conversion model). 

 

There are two key assumptions of the proposed method. First, that the persistence parameters 

are stationary. Chapter 5 examined this assumption using a global dataset of extended proxy 

records, finding that persistence parameters were typically stationary at millennial and 

centennial scales. Second, that the proxy persistence signal is representative of broader regional 

persistence. We address this by using Antarctic ice core records. These records contain 

relatively unbiased persistence signals. For some sea salt records, there is a tendency to 

overestimate persistence. 
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For other proxy types, additional care must be taken when assuming persistence signals are 

unbiased. For example, if used as a proxy for rainfall, tree-ring records typically overestimate 

low-frequency climate variability (Ludescher et al., 2020; Yuan et al., 2021). Statistical 

methods that address this bias (such as pre-whitening) will remove the low-frequency 

persistence signal from the proxy timeseries (Razavi and Vogel, 2018). These biases will 

propagate through the proposed model and give biased drought risk estimates.  

 

6.4 The ARMA(1,1) Model 
In this study, we demonstrate the Bayesian framework using the Autoregressive Moving 

Average (1,1) (ARMA(1,1)) model (Box et al., 1970). This model was selected because it is 

parsimonious and able to simulate a wide variety of different climate timeseries (Boes and 

Salas, 1978). Furthermore, Chapter 3 demonstrated that this model can reproduce 

low-frequency climate variability when calibrated to extended proxy records.   

 

The ARMA(1,1) model represents a timeseries y of length t as weighted sum of the prior 

observation (yt-1) and prior residual error (ϵt-1) plus an independent, normally distributed 

residual (ϵt).  The Φ and θ parameters are the respective weights of the prior observation and 

prior error, meaning that these parameters are sensitive to timeseries persistence.  

 

 𝑦𝑡  =  𝜇 +  𝜙(𝑦𝑡−1  −  𝜇)  + 𝜃𝜖𝑡−1  + 𝜖𝑡 Equation 6-1 

 

Where:  

 𝜖𝑡 ~ 𝑁(0, 𝜎) Equation 6-2 

 

The ARMA(1,1) model assumes that the data follows a normal distribution. However, 

hydroclimate timeseries are typically skewed. To ensure normality, a Box-Cox transformation 

was used prior to model calibration.  

 
𝑖𝑓 𝜆 ≠ 0: 𝑧𝑡  =  

𝑦𝜆
𝑡

− 1

𝜆
 

𝑖𝑓 𝜆 =  0: 𝑧𝑡  =  𝑙𝑜𝑔(𝑦𝑡) 
Equation 6-3 

 

6.5 Bayesian modelling framework 
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The proposed model uses proxy records to inform rainfall persistence calibration. This involves 

calibrating a stochastic model to the proxy. The proxy persistence posterior is then used to 

select hyperparameters of the rainfall persistence prior.  Although we present this framework 

using the ARMA(1,1) model, the same concepts can be applied to different models.   

 

Prior to calibration, both proxy and rainfall timeseries are transformed via a Box-Cox 

transformation. The transformed timeseries is represented as an ARMA(1,1) process, giving:  

 

𝑧𝑝𝑟𝑜𝑥𝑦,𝑡 = 𝜇𝑝𝑟𝑜𝑥𝑦 + 𝜙(𝑧𝑝𝑟𝑜𝑥𝑦,𝑡−1  −  𝑧𝑝𝑟𝑜𝑥𝑦) + 𝜃𝜖𝑝𝑟𝑜𝑥𝑦,𝑡−1 + 𝜖𝑝𝑟𝑜𝑥𝑦,𝑡 Equation 6-4 

 𝜖𝑝𝑟𝑜𝑥𝑦,𝑡 ~ 𝑇𝑁(0, 𝜎𝑝𝑟𝑜𝑥𝑦 , 𝑙𝑏, 𝑢𝑏) Equation 6-5 

 

 

𝑧𝑟𝑎𝑖𝑛,𝑡  = 𝜇𝑟𝑎𝑖𝑛 +  𝜙(𝑧𝑟𝑎𝑖𝑛,𝑡−1  −  𝜇𝑟𝑎𝑖𝑛)  +  𝜃𝜖𝑟𝑎𝑖𝑛,𝑡−1  +  𝜖𝑟𝑎𝑖𝑛,𝑡 Equation 6-6 

 𝜖𝑟𝑎𝑖𝑛,𝑡 ~ 𝑇𝑁(0, 𝜎𝑟𝑎𝑖𝑛, 𝑙𝑏, 𝑢𝑏) Equation 6-7 

 

Where the lower and upper bounds of the Truncated Normal distribution are based on the 

Box-Cox transformation. 

 
𝑖𝑓 𝜆 >  0: 𝑙𝑏 =  

−1

𝜆
 ;  𝑢𝑏 =  ∞ 

𝑖𝑓 𝜆 <  0: 𝑙𝑏 =  −∞ ;  𝑢𝑏 =  
−1

𝜆
 

Equation 6-8 

 

These lower/upper bounds are set to satisfy the positivity constraint introduced by the Box-

Cox transformation 

 

 𝑧𝑡𝜆 +  1 >  0 Equation 6-9 

 

The proxy record posteriors are then inferred using the likelihood function in the Appendix. 

Note that this likelihood function infers the posteriors of the mean and standard deviation of 

the untransformed timeseries y (based on first order approximations of the mean and standard 

deviation of the transformed timeseries z).  
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Following Frost et al., 2007, non-informative priors were used when calibrating the proxy 

ARMA(1,1) model.  

 

 𝜙𝑝𝑟𝑜𝑥𝑦, 𝜃𝑝𝑟𝑜𝑥𝑦~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1, 1) 

𝜆𝑝𝑟𝑜𝑥𝑦~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2, 2) 

𝜇𝑝𝑟𝑜𝑥𝑦~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑝𝑟𝑜𝑥𝑦 , 𝜎𝑝𝑟𝑜𝑥𝑦
2

) 

𝜎𝑝𝑟𝑜𝑥𝑦~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎(1, 𝜎𝑝𝑟𝑜𝑥𝑦) 

Equation 6-10 

 

From the proxy Φ and θ posteriors, the mean and covariance matrix are then used as 

hyperparameters to the rainfall Φ and θ priors. Because Φ and θ parameters are typically 

correlated, priors are modelled as a truncated multivariate normal distribution.  

 

 𝜙𝑟𝑎𝑖𝑛, 𝜃𝑟𝑎𝑖𝑛 ~𝑀𝑉𝑇𝑁(𝜇𝑝𝑟𝑜𝑥𝑦 𝜙,𝜃, Σ𝑝𝑟𝑜𝑥𝑦 𝜙,𝜃 ) Equation 6-11 

 

Both Φ and θ have lower and upper bounds of -1 and 1. For the other rainfall parameters, 

non-informative priors are used:  

 

 𝜆𝑟𝑎𝑖𝑛~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2, 2) 

𝜇𝑟𝑎𝑖𝑛~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑟𝑎𝑖𝑛, 𝜎𝑟𝑎𝑖𝑛
2

) 

𝜎𝑟𝑎𝑖𝑛~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎(1, 𝜎𝑟𝑎𝑖𝑛) 

Equation 6-12 

 

6.5.1.1 Inference of model posteriors  

Using the derived likelihood function, Bayesian inference is possible. Bayesian inference is 

useful because it can quantify stochastic model parameter uncertainty (i.e., parameter 

posteriors). This uncertainty can significantly influence drought risk estimates and water 

system performance.  

  

Parameter posteriors were inferred using the No U-Turn Sampling (NUTS) algorithm (Homan 

and Gelman, 2014). This is an efficient implementation of the Hamiltonian Monte Carlo 

(HMC) algorithm. HMC algorithms automatically adapt to the geometry of the target posterior 

distribution being sampled, making them suitable for inferring a variety of complex posteriors 

(Betancourt, 2018). Posteriors are sampled simultaneously from independent ‘chains’. In this 

study, we generated 2500 samples from 8 chains (each with a prior burn-in of 500 samples). 
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Every 20th sample from each chain was then extracted and combined to produce a final 

posterior with 1000 samples. Chain ‘mixing’ (i.e., the tendency for chains to sample from the 

same posterior space) was achieved, with an Rhat value of 1 (Brooks and Gelman, 1998). 

Algorithms were implemented using the Stan programming language (Carpenter et al., 2017).  

 

6.6 Study site and data 
The proposed modelling framework was demonstrated using a case study in the Williams River 

catchment, located in coastal southeast Australia (Figure 6-1). This catchment provides inflow 

to Grahamstown Dam, an important water source for the city of Newcastle (providing ~40% 

of the water supply for a population of ~600,000).  

 

Annual rainfall for the Williams River catchment was taken from the Australian Water 

Availability Project (AWAP). AWAP provides gridded daily rainfall data (on an ~5km x 5km 

grid) Australia wide, interpolated from a network of quality controlled rain gauges (Raupach 

et al., 2009). Grids within the catchment boundary were extracted, averaged, then aggregated 

to annual rainfall totals to produce the final rainfall timeseries used in stochastic modelling.  

 

The recently extended Law Dome Summer Sea Salt proxy record of  Jong et al., 2022 was used 

in this case study. This proxy has been used to reconstruct southeast Australian hydroclimate 

(Tozer et al., 2016); ENSO (Vance et al., 2013); and the IPO (Vance et al., 2022). The Law 

Dome site is linked to east Australia by Southern Ocean synoptic systems, which are 

sufficiently large to influence Australian/Antarctic climate (Udy et al., 2021). More 

specifically, the meridional position of Southern Ocean high pressure systems are conducive 

to coincident increased/reduced sea salt concentration in Law Dome snowfall and east 

Australian rainfall (Udy et al., 2022). Consistent with the Law Dome based IPO reconstruction 

of Vance et al., 2022, proxy measurements from CE 1-2011 were used in this study.  
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Figure 6-1: From Tozer et al., 2016. Site map of Williams River Catchment (located in eastern Australia) and Law 

Dome (located in east Antarctica).  

 

Although we have only selected one study site/proxy record, the proposed framework is 

flexible and can be used for any target catchment/proxy, provided the proxy contains reliable 

information about regional low-frequency climate variability.  

 

6.7 Methods 
After calibration, the proposed model was validated on the proxy/rainfall timeseries (described 

in Section 5.1), then compared against other stochastic models (described in Section 5.2).  

 

6.7.1 Model validation 

The proposed model simultaneously calibrates two stochastic models - one for the proxy 

timeseries, another for rainfall. For both proxy/rainfall models, posteriors contained 1,000 

parameter samples. For each sample, a single synthetic timeseries of equal length to the rainfall 
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or proxy timeseries was generated. Statistics for each synthetic timeseries were calculated. The 

corresponding proxy/rainfall statistic was then compared against the stochastic sampling 

distribution. The statistics evaluated were:  

● Mean 

● Lag-1 Autocorrelation 

● Standard Deviation 

● Hurst Coefficient, calculated using the Whittle estimator.  

● Skew 

● Minimum 

● Maximum 

● Minimum and maximum cumulative sums for overlapping 2, 5, 10, 30, 50, and 100-

year windows.  

○ Due to the limited rainfall record length, minimum/maximum 50 and 100-year 

cumulative sums were only validated for the Law Dome model.   

 

We emphasise that validating both rainfall and proxy models is important. The purpose of 

rainfall model validation is to demonstrate that proxy-based priors can still generate realistic 

rainfall statistics. The purpose of proxy model validation is to demonstrate that the calibrated 

model can reproduce long-term climate variability that is not present in instrumental rainfall 

records.  

 

A stringent model validation also involves checking if residual assumptions are met. These 

assumptions are that the model residuals have mean zero, are normally distributed, and are 

independent (i.e., no serial dependence). Residual diagnostics were calculated following 

Chapter 4. This involved calculating the model residuals from each posterior parameter set. 

These residuals were then used to evaluate model assumptions:  

● Residuals having a mean of zero.  

This was assessed by calculating the 90% credible interval of the residual mean posterior. 

Residuals were considered acceptable if the 90% credible interval contained zero.  

 

● Residuals are normally distributed.  

Normality was assessed via two checks. First, we used a Quantile-Quantile plot (QQplot) 

comparing the posterior of standardised residuals against theoretical Normal quantiles. A 90% 

credible interval was calculated for each standardised residuals. Residuals were considered 
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normal if 90% of the theoretical quantiles fell within the corresponding credible interval or if 

a Shapiro-Wilks test using the median residual distribution returned a p-vale greater than 0.1).   

 

● Residuals are serially independent.  

To evaluate independence, two different checks were performed. First, we evaluated the 

significance of residual Lag-1 autocorrelations (we consider this a proxy for dependence at 

greater time lags). Lag-1 autocorrelations were computed for each residual set. Residuals were 

considered independent if (a) the corresponding 90% credible interval contained zero; or (b) if 

the median Lag-1 autocorrelation returned a p-value >= 0.1 for the corresponding Pearson 

correlation test statistic. Second, the residual cumulative periodogram was calculated. For 

white noise, the cumulative periodogram should increase by 0.5 times the standardised 

frequency. Residuals were considered white noise if (a) the corresponding 90% credible 

interval for each cumulative frequency contained the theoretical white noise line 90% of the 

time or (b) the median cumulative periodogram returned an insignificant Kolmogorov-Smirnov 

p-value when compared with the theoretical white noise line.  

 

6.7.2 Comparison with existing stochastic models  

After model validation, we then compared our proposed model with (a) the same model 

calibrated using only rainfall data (i.e., the standard calibration approach); and (b) two other 

methods of palaeoclimate-informed stochastic modelling. These methods of palaeoclimate-

informed stochastic modelling were the Climate informed multi-time scale stochastic (CIMSS) 

framework of Henley et al., 2011 (explained in Section 5.2.1) and the proxy-based non-

parametric K-Nearest Neighbour (proxy-KNN) resampling of Gangopadhyay et al., 2009 

(explained in Section 5.2.2). Both methods used palaeoclimate data to infer hydroclimatic state, 

then derive corresponding state data using instrumental measurements.  

 

Respective models were calibrated and used to generate 1,000 synthetic rainfall timeseries. For 

each model, timeseries 2,011 years long were generated (the same length as the corresponding 

Law Dome record). For each timeseries, minimum/maximum cumulative sums for overlapping 

2, 5, 10, 30, 50, and 100-year windows were calculated. These sampling distributions from 

each model were then compared.  
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6.7.2.1 Climate informed multi-time scale stochastic framework  

The CIMSS framework uses a two-level hierarchical model to first sample the length of wet 

and dry periods using palaeoclimate information, then generate wet and dry data using a 

stochastic model calibrated to instrumental measurements.  

 

In the original CIMSS framework, the length of wet/dry periods were inferred based on various 

reconstructions of the Interdecadal Pacific Oscillation (IPO). The IPO is a leading driver of 

global multidecadal variability - different phases of the IPO (i.e., positive, negative, and 

neutral) are associated with increased/reduced rainfall. For example, in eastern Australia, a 

negative IPO is associated with increased rainfall and flooding, whereas a negative/neutral IPO 

is associated with reduced rainfall and drought.  In order to generate annual rainfall totals 

during different phases of the IPO, an AR(1) stochastic model is calibrated to respective IPO 

phases following the method of Frost et al., 2007.  

 

The original model combined various reconstructions of the Interdecadal Pacific Oscillation 

(IPO) into a single composite index. The length of consecutive periods above/below the 

composite index median (i.e., the ‘run lengths’) is then used to calibrate a Gamma distribution. 

In subsequent stochastic simulations, this distribution is used to generate IPO phase run lengths.  

 

Instead of using a composite index, in this study we used the recent IPO reconstruction of 

Vance et al., 2022 to infer wet and dry run lengths. This reconstruction was selected over other 

IPO reconstructions (and the composite approach used in the original CIMSS framework) 

because it is based upon the same Law Dome Summer Sea salt proxy used in our proposed 

model. This removed proxy record selection as a potential confounding factor when comparing 

subsequent climate risk estimates. Furthermore, this reconstruction is also longer than previous 

IPO reconstructions (spanning ~2,000 years), with the early reconstructed period showing 

extended IPO neutral/positive states. Such states are associated with reduced rainfall across 

eastern Australia. 

 

The tendency for longer IPO neutral/positive run-lengths in the Vance et al. (2022) 

reconstruction required some updates of the original CIMSS framework, which used the same 

Gamma distribution to generate run-lengths for different IPO phases. In this study, separate 

Gamma distributions were calibrated to IPO negative (i.e., IPO < -0.5 and IPO neutral-positive 

phases (i.e., IPO > -0.5).  
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For further details on the CIMSS likelihood function, refer to the Appendix.  

 

6.7.2.2 Proxy-based k-Nearest Neighbour resampling  

Instead of using proxy records to infer the state of a large-scale climate driver, then sample 

from instrumental measurements (i.e., the CIMSS framework); the proxy-based  k-Nearest 

Neighbour (kNN) method of Gangopadhyay et al., 2009 uses the proxy record directly to infer 

catchment wet/dry state. Based on the kNN resampling method of Lall and Sharma (1996), for 

each proxy measurement, this approach (a) identifies similar proxy measurements in the 

overlapping proxy/instrumental period; then (b) randomly samples one of these similar proxy 

measurements; and (c) samples the instrumental measurement corresponding to this proxy 

measurement. Assuming there is a significant climate/proxy relationship, this approach 

preserves the relative length of proxy wet/dry periods and, by resampling instrumental 

measurements directly, preserves climate variance.    

 

The original method proposed by  Gangopadhyay et al. (2009)  was developed using multiple 

tree-ring chronologies - these chronologies differed in length and had data missing for different 

years. Accounting for these features required additional methodological steps not required for 

this single proxy analysis (e.g., subsetting of chronologies, dimension reduction via Principal 

Components Analysis). Therefore, we implemented the following, simplified method: 

● For each proxy measurement, identify the K closest instrumental-period proxy 

measurements (using Euclidean distance as a measure of ‘closeness’). Following 

Gangopadhyay et al. (2009), K was set to √N, with N being the length of the 

instrumental record.  

● Assign sampling weights to each of the K nearest observations. Sampling weights were 

assigned following Lall and Sharma (1996). These weights increase the likelihood of 

resampling the closest observations (out of the K selected). 

● Using these sampling weights, for each proxy measurement randomly sample an 

‘instrumental-period’ proxy measurement.  

● Sample the climate variable corresponding to the instrumental-period proxy.  

● Repeat until 1,000 timeseries replicates are generated.  

 

6.7.3 Comparing required storages for hypothetical reservoirs  
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6.7.3.1 Estimating flow and required storage  

After comparing different paleo-stochastic models, we further compared the standard and 

proxy-informed ARMA model by (1) estimating annual streamflow using rainfall outputs and 

the Budyko water balance model then, using these flow outputs, (2) designing hypothetical 

reservoirs that will always meet a specific demand (i.e., will never fail). The storage size of 

this ‘no-fail’ reservoir was estimated using the Sequent Peak Algorithm (SPA). Reservoir size 

distributions from each model were then compared.   

 

The Budyko model is a parameter-free model that can estimate runoff as a function of rainfall 

and potential evapotranspiration (PET). The model is skilful at predicting annual runoff in 

temperate climates (e.g., the Williams River catchment). Following Tozer et al. (2018), PET in 

each year was assumed to be the annual mean from the instrumental record. Although PET 

variability is an important influence on the annual water balance, this approach is justified 

because (a) in the Williams River, annual rainfall variability is much greater than annual PET 

variability (meaning rainfall variability is a much stronger driver of runoff variability); and (b) 

there are very few palaeoclimate PET reconstructions to use/model as an input. As such, for 

annual rainfall P and catchment average PET, annual runoff Q was estimated as: 

 

 
𝑄 =  𝑃 −  𝑃 ∗  √

𝑃𝐸𝑇

𝑃
 (1 −  𝑒𝑥𝑝(−

𝑃𝐸𝑇

𝑃
) 𝑡𝑎𝑛ℎ(

𝑃

𝑃𝐸𝑇
) 

Equation 6-13 

  

Once the runoff timeseries were generated, hypothetical reservoirs were designed using the 

SPA. This is a preliminary screening method that can approximate ‘no-fail’ reservoir size for 

given inflow/demand sequences. For this analysis, demand was constant each year and set as a 

fixed proportion of the instrumental-period mean annual flow (MAF). The instrumental-period 

MAF was calculated from streamflow outputs produced using the Williams River AWAP 

rainfall timeseries described in Section 4. Five different demand scenarios were used, 0.1, 0.3, 

0.5, 0.7, and 0.9 x MAF. These demand scenarios are consistent with a variety of different 

water supply systems (McMahon et al., 2007b).   

 

For a given sequence, the SPA estimates ‘no-fail’ reservoir size by calculating the cumulative 

difference between inflow and demand. The highest cumulative difference is the storage 
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required to meet demand. A visual representation of the SPA is Figure 6-2.For inflow 

sequences of length N, the algorithm can be described as:  

 

 𝑆 =  𝑀𝑎𝑥𝑖𝑚𝑢𝑚(𝑆𝑡) 𝑓𝑜𝑟 𝑡 =  1, . . . . , 𝐾𝑁 Equation 6-14 

 

Where  

 

 𝑆𝑡  =  𝑆𝑡−1  +  𝐷𝑒𝑚𝑎𝑛𝑑𝑡  −  𝐼𝑛𝑓𝑙𝑜𝑤𝑡 ;  𝑖𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  

𝑆𝑡  =  0;  𝑖𝑓 <=  0  

Equation 6-15 

 

And  

 𝐼𝑛𝑓𝑙𝑜𝑤𝑡 +𝐾𝑁  = 𝐼𝑛𝑓𝑙𝑜𝑤𝑡 ;  𝐷𝑒𝑚𝑎𝑛𝑑𝑡+𝐾𝑁  =  𝐷𝑒𝑚𝑎𝑛𝑑𝑡   Equation 6-16 

 

In this formulation, the inflow/demand sequences are repeated (i.e., K = 2). This accounts for 

low inflow periods that may occur at the end of the sequence.  

 

 
Figure 6-2: Example of the Sequent Peak Algorithm. The required storage is the maximum cumulative difference 

between demand and inflow (red dashed line).  

 

6.7.3.2 Comparing storage estimates from unconditional and conditional rainfall simulations  

When estimating required storage, typical infrastructure planning horizons are ~50 years. 

Therefore, when estimating required storages, we generated 50-year stochastic replicates from 
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the standard and proxy-informed models. We also compared the impact of conditioning the 

stochastic replicate on the most recent calibration period observation versus an ‘unconditioned’ 

replicate, which was initialised by randomly sampling from the calibration period marginal 

distribution. Note that the conditional simulation is essentially a 50-year ARMA(1,1) forecast.  

 

The main reason for comparing conditional and unconditional simulations is that for timeseries 

exhibiting strong serial dependence (e.g. centennial-scale variability), the conditional variance 

over a 50-year lead time can be much lower than the unconditional variance. Figure 6-3 

highlights how, for a theoretical ARMA(1,1) process with an unconditional variance of 1, the 

conditional variance for an ARMA(1,1) forecast will depend on the Φ and θ parameters. 

Crucially, for persistence parameters commensurate with centennial-scale variability (Φ = 0.98 

and θ = -0.95, Chapter 3), it takes a forecast lead time of ~100-years before the conditional 

variance is equal to the unconditional variance. The difference between conditional and 

unconditional simulations may be important when estimating required storages over a 50-year 

planning horizon.   

 

 
Figure 6-3: Conditional variance of an ARMA(1,1) process for different forecast lead times. All models have an 

unconditional variance of 1. Note that Phi = 0, Theta = 0 model is equivalent to white noise.  

 

6.8 Results 
6.8.1 Bayesian Hierarchical Model calibration 
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Figure 6-4 shows ARMA(1,1) posteriors for the ‘standard’ calibration (i.e. calibrated using 

only instrumental data) and the ‘proxy-informed’ calibration (i.e. the Empirical Bayes 

framework). We can see: 

• A considerable reduction in persistence parameter uncertainty (i.e. Φ, θ and Φ + θ) for 

the proxy-informed model.  

• For the standard model, the Φ + θ posterior contained zero (i.e. the instrumental record 

is consistent with white noise). For the proxy-informed model, the Φ + θ posterior was 

greater than zero, indicating positive persistence.  

• However, the proxy-informed model had a wider Mean posterior than the standard 

model.   

 

For the mean parameter, the increase in posterior uncertainty can be explained by the proxy-

informed model consistently sampling from regions of higher persistence (Figure 6-5). Higher 

persistence reduces the number of independent observations, which in turn reduces the 

effective sample size (Hu et al., 2017; Macias-Fauria et al., 2012). Reduced effective sample 

size due to higher persistence in turn leads to greater uncertainty in the mean (Koutsoyiannis 

and Montanari, 2007).   

 

 
Figure 6-4: Comparison of 'Standard' ARMA(1,1) posteriors and ‘Proxy-Prior’ ARMA(1,1) model posteriors. 

‘Standard’ refers to a model calibrated using only instrumental data. ‘Proxy-Prior’ refers to a model calibrated 

where Phi and Theta prior distributions were defined based on proxy information.  
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The higher persistence in the proxy-informed model is shown in Figure 6-5. From the top panel, 

we can see that the proxy-informed Autocorrelation Function (ACF) decays slowly. This slow 

decay is typical of timeseries exhibiting long-term persistence (i.e. low-frequency climate 

variability) (Dimitriadis and Koutsoyiannis, 2015; Koutsoyiannis, 2002; Tyralis and 

Koutsoyiannis, 2011). In contrast, the standard model ACF quickly reduces to zero, which is 

indicative of short-term persistence.  

 

From the bottom panel of Figure 6-5, we can see large differences between the standard and 

proxy-informed Φ and θ joint posterior. That implies an inconsistency between the instrumental 

and proxy persistence signal. However, Chapter 4 highlighted that when calibrating an 

ARMA(1,1) model to a ~100-year record, MCMC samplers will not explore posterior regions 

associated with centennial-scale variability. This highlights a key strength of the proposed 

method – using long proxy records provides sufficient information for the MCMC sampler to 

explore posterior regions associated with centennial-scale variability.  

 

 
Figure 6-5: Top – comparison of theoretical Autocorrelation functions for the ‘standard’ and ‘proxy prior’ 

Williams River rainfall models. Bottom – comparison of bivariate Phi and Theta posteriors.  
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Residual diagnostics for the Law Dome and proxy-informed Williams River models are shown 

in Figure 6-6. Both models had posterior Lag-1 autocorrelations that did not contain zero, 

however, the median of respective posteriors was not significant when evaluated using a 

Pearson correlation. The Williams River residuals were approximately normal, whereas the 

Law Dome residuals were slightly kurtotic (note that slight kurtosis will not bias model 

parameters - Knief and Forstmeier, 2021).  

 

 
Figure 6-6: Residual diagnostics of the ARMA(1,1) model calibrated to (top): Williams River rainfall with proxy-

informed priors; (bottom): the Law Dome summer sea salt record. 

 

6.8.2 Bayesian model validation 

Figure 6-7 shows validation results for the proxy-informed Williams River ARMA(1,1) and 

the Law Dome models. Figure 6-7 shows that both models were able to reproduce key statistics. 
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For the Williams River model, the key statistics were not biased by proxy-informed priors. For 

the Law Dome model, the key statistics related to low-frequency variability, the 100-year 

minimum and maximum, were captured. Capturing the 100-year minimum and maximum 

increases confidence that the Williams River model will simulate realistic low-frequency 

variability. 

 

 
Figure 6-7: ARMA(1,1) validation results for (top): Williams River rainfall with proxy-informed priors; (bottom): 

the Law Dome summer sea salt record. 

 

6.8.3 CIMSS calibration 
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CIMSS validation results are shown in Appendix 2 and indicate that (a) IPO run-lengths are 

consistent with a Gamma distribution and (b) the calibrated model can reproduce key 

hydrological statistics in the Williams River catchment.  

 

CIMSS model posteriors are displayed in Figure 6-8. We can see that IPO positive/neutral 

phases had a much longer and more variable run-lengths than IPO negative. We can also see 

that IPO positive/neutral phases had lower and less variable rainfall that IPO positive phases 

(consistent with Verdon et al., 2004). However, compared with the parameter uncertainty, these 

differences in rainfall mean and variability are relatively small.  

 

 
Figure 6-8: CIMSS posteriors for palaeoclimate  IPO run-lengths (left) and AR(1) models calibrated to respective 

IPO phases (right).   

 

Compared to the proxy-ARMA model, the CIMSS standard deviation posterior had higher 

variance. Posteriors for the mean and Box-Cox parameters had slightly higher variance. Higher 

variance in CIMSS posteriors was expected because these parameters are inferred from 

instrumental record subsets. In contrast, the proxy-informed model uses the entire instrumental 

record.  
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Figure 6-9: Comparison of CIMSS and proxy-informed ARMA(1,1) posteriors for the Williams River catchment. 

 

6.8.4 Comparison of hydrological statistics 

Figure 6-10 compares various hydrological statistics derived from different Williams River 

stochastic models. We can see that: 

• The proxy-ARMA model simulated more severe droughts than all other models.  

• The proxy-ARMA model simulated more variable statistics than all other models. The 

only exception was for the CIMSS model, which simulated more variable standard 

deviation and larger short-term maximums.   

• The kNN model produced less severe droughts than all other models. Surprisingly, the 

standard ARMA model (i.e., the model calibrated using only instrumental 

measurements) produced more severe droughts than the paleoclimate-informed kNN 

model.  
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Figure 6-10: Comparison of hydrological statistics generated from the respective stochastic models. Dots show 

median, bars show 90% CI. 

 

6.8.5 Exploring the limitations of the kNN method  

Figure 6-10 indicates that the kNN method produced less severe low-frequency statistics than 

the standard ARMA(1,1) model. This is a surprising result. We expected the kNN method, 

which uses proxy data, to produce more severe low-frequency statistics than the standard 

approach (which did not use proxy data). However, note that the Law Dome proxy has 

relatively low skill in predicting Williams River rainfall (R2 of ~25%). This means that 

resampled wet or dry proxy values may not correspond with similarly wet or dry rainfall values.  

 

To assess if these results are due to limited proxy skill, we performed a synthetic experiment 

using a ‘perfect-skill’ proxy. This involved: 
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1. Scaling the Law Dome proxy record to have the same mean and standard deviation as 

Williams River rainfall. This method is commonly used to reconstruct rainfall and 

streamflow timeseries.  

2. Extracting the most recent 110-years of the scaled proxy record. This is the ‘synthetic 

rainfall’, which has a perfect correlation with the ‘instrumental proxy’.   

3. Applying the kNN reconstruction method using the ‘synthetic instrumental’. This is the 

‘perfect skill’ reconstruction; pre-instrumental proxy values should now sample 

similarly wet and dry ‘rainfall’ values.  

4. Calibrating the standard ARMA(1,1) model to the ‘synthetic instrumental’ then 

generating 1,000 rainfall replicates (2,011 years long, as per previous analyses).  

5. Estimating and comparing 50 and 100-year minimums and maximums from 

ARMA(1,1) replicates and the ‘perfect-skill’ kNN reconstruction.  

 

Results are shown in Figure 6-11. We can see that compared with the standard ARMA model, 

the ‘perfect skill’ kNN produced higher 50 and 100-year maximums. However, both models 

produced similar 50 and 100-year minimums. For both minimum and maximum statistics, the 

standard ARMA produced sampling distributions with higher variability. 

 

 
Figure 6-11: Comparison of required storages for the standard ARMA model (i.e., a model calibrated to 

instrumental data only) and the 'perfect-skill' kNN model. Synthetic climate data with a perfect correlation to the 

Law Dome proxy was used to for both models.  
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To further explore why the standard ARMA(1,1) model produced more severe droughts than 

the kNN model, Figure 6-12 compares three randomly selected rainfall timeseries generated 

from both models. There are three features of interest. First, the ARMA(1,1) model can 

extrapolate to more severe high and low flow rainfall totals. The kNN model is restricted to 

resampling rainfall totals from the instrumental-period. Second, the ARMA(1,1) model can 

generate novel sequences of wet and dry years. In contrast, the kNN method only resamples 

the proxy sequence. Changes in the sequencing of wet and dry years, and an ability to 

extrapolate to more extreme wet and dry years, will impact rainfall statistics. Third, the 

instrumental-period of the proxy timeseries is quite dry when compared with the 

pre-instrumental period. This dry instrumental-period was used to calibrate the ARMA(1,1) 

model, which meant that the ARMA(1,1) timeseries typically had a lower mean than the kNN 

method (this is also evident in Figure 6-10). However, which of these three features is driving 

the unexpected difference between the ARMA(1,1) and kNN models?       
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Figure 6-12: Comparison of three randomly selected Instrumental-ARMA and kNN flow timeseries for the 'perfect 

proxy' experiment. Solid black line shows the 100-year moving average. Coloured straight lines show the 

respective 10th percentile of the 100-year minimum flow sampling distribution for each model.  

 

As a final diagnostic check, the perfect skill analysis was repeated, but with the proxy 

timeseries reversed. This meant that the synthetic rainfall used to calibrate the ARMA(1,1) 

model had a higher mean relative to some pre-instrumental periods. Rainfall statistics from this 

‘perfect skill, reversed timeseries’ analysis are shown in Figure 6-13. In this instance, the kNN 

method did produce more lower 50 and 100-year minimums.  
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Figure 6-13: Same as, Figure 6-11 but with the Law Dome timeseries reversed prior to model 

calibration. 

 

From Figure 6-11, Figure 6-12, and Figure 6-13, we can infer that, for the kNN model, 

repeatedly resampling the same proxy sequence can limit sampling variability in various 

hydrological statistics. Furthermore, the relative mean of the proxy instrumental-period will 

influence the magnitude of hydrological statistics. Finally, for proxies with limited skill in 

predicting the target variable, resultant hydrological statistics can have similar magnitudes to a 

standard ARMA model calibrated to instrumental measurements.  

 

6.8.6  Comparison of required storages 

Figure 6-5 and Figure 6-7 highlight that the proxy-informed ARMA(1,1) model is capable of 

simulating centennial-scale variability. What might this mean for the design of water 

infrastructure?  

 

When using stochastic models to estimate required storages, water managers will either (a) 

generate stochastic replicates of equal length to the planning horizon or (b) generate extended 

stochastic replicates which are then considered representative of ‘baseline’ risk over a planning 

horizon.  
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Using a proxy-informed model, a ‘baseline’ risk approach will generate timeseries with much 

greater centennial-scale variability. In Figure 6-14, the proxy-informed model simulates much 

longer periods above or below the long-term mean (red dashed line). This translates to much 

higher required storages (because the SPA is much more sensitive to long-term change in mean, 

as opposed to short-term extremes). For a high demand scenario (e.g. 0.9 x MAF), the SPA 

indicates that centuries of water will have to be stored to ensure demand is consistently met.  

 

This ‘baseline’ scenario neglects that typical reservoir planning horizons are ~50-years. 

Furthermore, the top row of Figure 6-14 indicates that hydroclimatic changes occur at rates 

slower than ~50-years, suggesting that a ‘baseline’ approach may overestimate risk over a 

planning horizon.  

 

Instead of a ‘baseline’ approach, it is perhaps more appropriate to estimate the storage required 

to meet demand over a planning horizon (e.g. 50-years). This can be estimated using either 

stochastic replicates conditioned on the most recent observation (i.e., a timeseries forecast) or 

unconditioned stochastic replicates of equal length to the planning horizon.  

 

Figure 6-15 compares hydrological statistics and required storages from conditional and 

unconditional simulations of the standard and proxy-informed ARMA models. By limiting 

stochastic replicate length to 50-years, the proxy-informed model produces much smaller 

required storages than those in Figure 6-14. The unconditional proxy-informed replicates 

typically produced storage distributions with greater variance and slightly higher medians. 

However, for low and moderate demand scenarios (0.1-0.5 x MAF) conditional simulations for 

the standard and proxy-informed models produced similar storage distributions.  
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Figure 6-14: Top - comparison of four standard and proxy prior rainfall replicates. 100-year moving averages from 

2,011-year replicates are shown. For each replicate, the standard and proxy informed timeseries have the same 

long-term mean. Bottom – distribution of required storages for different demand scenarios. Comparison of 

storages  
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Figure 6-15: Comparison of hydrological extremes from 50-year stochastic replicates. The 'U' stands for 

unconditional simulation, 'C' stands for conditional simulation. 

 

6.8.7 A cautionary note on the need to validate the proxy record model 

Although not described in Section 3, we also calibrated an Autoregressive Fractionally 

Integrated Moving Average (ARFIMA) model using the Empirical Bayes approach. Like the 

ARMA(1,1) model, this model can potentially simulate realistic climate variability. However, 

when validated on the Law Dome proxy, the Bayesian ARFIMA model did not reproduce 

100-year extremes (Figure 6-16). Potential reasons for this failure are outside the scope of this 

paper. Rather, we emphasise the importance of validating the stochastic model on the proxy 

record. This ensures that the proxy persistence is being accurately simulated when applied to 

catchment rainfall.  
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Figure 6-16: Same as Figure 6-7, but for the ARFIMA model. 

 

6.9 Discussion 
This study demonstrates several frameworks for incorporating palaeoclimate proxy into 

stochastic models. However, the framework matters. The proposed Bayesian framework 

resulted in well-defined stochastic model persistence, which in turn produced stochastic 

simulations of centennial-scale variability. This was a clear improvement over ‘standard’ 

stochastic model calibrated using only rainfall data. This ‘standard’ model had poorly defined 

stochastic model persistence and did not exhibit the same degree of centennial-scale variability. 

Surprisingly, the CIMMS and kNN proxy-informed frameworks did not demonstrate the 

expected benefits over the ‘standard’ model (i.e. simulation of more severe droughts under 

centennial-scale variability). Potential reasons for this result are discussed later.  
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The key concept proposed in this study is using palaeoclimate proxy data to inform the 

Bayesian calibration of stochastic model persistence. This is necessary because inferring 

persistence from short instrumental records is challenging, shown by the high variance 

posteriors in Figure 6-4. This large posterior variance means that instrumental rainfall records 

are not inconsistent with a white noise or an AR(1) process (i.e. ‘short-term persistence’) (Sun 

et al., 2018). In contrast, the proxy-informed ACF in Figure 6-5, and other proxy records (e.g. 

Markonis and Koutsoyiannis, 2016), clearly demonstrate centennial-scale variability or 

‘long-term persistence’. From a water management perspective, if short-term persistence is 

incorrectly assumed, drought risk will be underestimated, even over 50-year planning horizons 

(Figure 6-15). However, is such an assumption ‘incorrect’ if the best available source of 

information (i.e., instrumental records) does not contain contrary evidence? From a water 

management perspective, this highlights a key use for palaeoclimate data: it can reject ‘short-

term’ persistence models due to better defined persistence.  

 

Although proxy records can better define persistence and reduce parameter uncertainty, a key 

caveat is that proxy information is potentially biased. These biases can arise due to (a) non-

climatic signals in the proxy record; (b) confounding climate signals, for example a temperature 

signal that increases proxy timeseries persistence (Franke et al., 2013b); and/or (c) statistical 

processing of ‘raw’ proxy measurements, which can modify the climate signal (Razavi and 

Vogel, 2018). This means that proxy records should be evaluated for biases before stochastic 

model calibration.  

 

In terms of ice core records and persistence, snow accumulation records are unbiased and sea 

salt records have a positive bias (Chapter 2). However, these bias evaluations are limited by 

observation length. This is because ‘long’ rainfall records (e.g., 100-150 years) are still subject 

to considerable sampling uncertainty, meaning that small biases will not be detected.  

 

For the proposed Bayesian framework, there is a clear trade-off between reducing parameter 

uncertainty (meaning persistence is better defined) and calibrating models with potentially 

biased proxy data. The relative importance of either is, in our opinion, a value judgement to be 

made by the modeller. For this case study, proxy persistence was well defined and clearly 

indicative of long-term persistence. In contrast, instrumental persistence was poorly defined 
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and not inconsistent with white noise. Because instrumental persistence was so poorly defined, 

we were willing to accept some proxy bias.  

 

Aside from better defined persistence, an additional advantage to the proposed Bayesian 

approach is that no assumptions of stationary climate-proxy relationships are made. This 

assumption underpins most existing palaeoclimate reconstructions (and the kNN method). For 

remote proxies, a stationary climate-proxy relationship requires the atmospheric ‘links’ 

between sites to remain relatively unchanged in the pre-instrumental period. This is difficult to 

validate. Instead, the Bayesian approach makes more (somewhat) testable assumptions of (a) 

persistence parameters being stationarity (demonstrated in Results Chapter 4); and (b) common 

persistence signals across large regions (demonstrated by Fatichi, Ivanov and Caporali, 2012; 

Iliopoulou et al., 2018;  and Tyralis et al., 2018). Insufficient evidence against stationary, and 

common, persistence over the mid-latitudes and Antarctica allows the incorporation of 

centennial-scale variability in stochastic modelling.   

 

Various, different proxy records provide evidence for centennial-scale variability – so, what 

causes this variability? The most common explanation links rainfall variability with 

low-frequency changes in sea surface temperature (SST) anomalies (e.g., ENSO and the IPO). 

These changes in SST anomalies can then be linked with aerosol forcing from pulses of 

volcanic activity (Mann et al., 2021, 2020). Another explanation links climate variability with 

low-frequency changes in solar irradiance (Ait Brahim et al., 2018; Raspopov et al., 2008). 

Finally, various work shows that statistical descriptions of centennial-scale variability can be 

derived from the Principle of Maximum Entropy (Koutsoyiannis, 2011, 2005). Irrespective of 

what causes centennial-scale climate variability, it occurs. Therefore, it must be accounted for 

in water management – this study provides a framework for which this variability can be 

quantified, which can inform subsequent management philosophies and decisions.  

 

Any question of how to manage water under centennial-scale climate variability must first 

consider the rate at which climate can change – will it be gradual, or sudden? More specifically, 

for a specific infrastructure planning horizon, at which time lags are historic observations 

useful for inferring future risk? The very nature of ‘low-frequency’ variability suggests that 

change, and therefore changing risk, occurs gradually. This was highlighted in Chapter 5, 

which demonstrated that, when inferring the mean and standard deviation of a timeseries under 

historic climate variability, (a) 100 years of observations can be used as a proxy for risk in the 
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next 100 years and (b) 1,000 years of observations cannot be used as a proxy for risk in the 

next 1,000 years. Points (a) and (b) suggest that climate risk is historically non-stationary, but 

not over typical infrastructure planning horizons.  

 

Climate non-stationarity and centennial-scale variability highlight limitations with inferring 

climate risk using long-term ‘baseline’ simulations (e.g. Figure 6-14). Instead of designing a 

system that is robust under centennial-scale variability, it may be preferable to monitor climate, 

re-condition risk estimates based on recent observations, and, if necessary, adapt the system so 

it satisfices some management goals over a planning horizon. This monitor, re-condition, and 

adapt approach is aligned with the philosophies of info-gap decision theory and dynamic 

adaptive policy pathways (Ben-Haim, 2010; Haasnoot et al., 2013).  

 

Irrespective of how climate risk is managed, this study suggests that over a planning horizon, 

the range of plausible future hydroclimatic trajectories is irreducibly ‘wide’. This ‘wide’ 

uncertainty is driven by (a) the somewhat random nature of climate variability (i.e. aleatory 

uncertainty), (b) parameter uncertainty, and (c) centennial-scale variability. These factors mean 

that water supply systems and management plans must be robust under a future range of 

drought risk that is irreducibly ‘wide’, hence the term ‘wide uncertainty’.   

 

As well as ‘wide’ uncertainty, managing water under future climate risk must also contend with 

‘deep’ uncertainty under anthropogenic climate change (Hallegatte et al., 2012; Kwakkel et al., 

2016a). Deep uncertainty describes how we cannot reasonably assign probabilities to future 

climate risk factors, such as future socio-economic development and associated greenhouse gas 

emissions or land use changes (Lempert et al., 2006).  

 

There are numerous risk management paradigms that examine system-specific risks and 

vulnerability, all with common themes of ‘bottom-up’ and ‘scenario-neutral’ risk assessments 

(Ben-Haim, 2006; Culley et al., 2016; Hall et al., 2012; Lempert et al., 2006). These paradigms 

were originally developed to manage water under ‘deep’ uncertainty – naturally, they can be 

applied to ‘wide and deep’ uncertainty.  

 

A key theme linking various paradigms for managing water under ‘wide and deep’ uncertainty 

is the need to explore some future climate risk space - stochastic models are an ideal tool for 

doing so. Stochastic models can rapidly generate a wide range of climate information, which 
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is necessary to identify system vulnerabilities (Fowler et al., 2022). Stochastic model 

parameters can also be perturbed, which can produce hypothetical climate timeseries that 

incorporate climate change signals (Guo et al., 2018; McInerney et al., 2023). Furthermore, 

stochastic models can incorporate palaeoclimate variability or have non-stationary climate 

variables as a covariate (Kiem et al., 2021). In particular, the Bayesian framework presented in 

this study can be extended to forecast future climate and include additional climate information 

(e.g. climate model projections), meaning it can be used to characterise ‘wide and deep’ 

uncertainty.  

 

Paleo-stochastic models are well suited for use in various existing risk assessment and 

management frameworks. However, the paleo-stochastic model used matters. This study 

highlights limitations with the kNN and CIMSS frameworks. Both produced similar required 

storages to the standard stochastic model (i.e., the ARMA(1,1) model calibrated using only 

instrumental data). When using these models in the study catchment, the inclusion of 

palaeoclimate information offered minimal benefits over simpler, rainfall-only methods.  

 

The kNN model is constrained to resample instrumental data based on a single proxy sequence. 

However, due to the chaotic and random nature of climate variability, different sequences are 

possible. Furthermore, the instrumental-period of the proxy sequence may be relatively drier 

than the pre-instrumental period. This means that kNN method will repeatedly resample the 

same, wetter pre-instrumental period. In contrast, the proposed Bayesian model can generate 

novel sequences that are wetter and drier than the instrumental period, leading to a more robust 

characterisation of climate risk.   

 

The CIMSS framework was limited by the weak influence of the IPO on catchment rainfall. In 

the Williams River, the IPO ‘wet’ phase had a slightly higher mean rainfall than the ‘dry’ phase. 

Despite the use of proxy data to simulate wet and dry ‘run-lengths’, these wet and dry runs still 

had similar mean states, resulting in similar required storages to the standard ARMA(1,1) 

model. Unlike CIMSS, the proposed Bayesian method does not depend on large-scale climate 

drivers when inferring wet and dry values. Because wet and dry values are not defined based 

on poorly separated instrumental sub-periods, the proposed Bayesian model can extrapolate to 

more severe wet and dry values. This also explains why the Bayesian model produced high 

statistical uncertainty than the CIMSS model (even though parameter uncertainty was smaller).  
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Due to the kNN and CIMSS results, we emphasise that future development of paleo-stochastic 

models should include a comparison with a ‘standard’ stochastic model (i.e., a stochastic model 

calibrated to instrumental measurements, not proxy data). Such a comparison is necessary to 

demonstrate the added benefits (or not) of using proxy data. Ideally, the comparison will focus 

on the perceived benefits of proxy data. Therefore, when comparing proxy-informed and 

standard stochastic models, the following guiding questions may be useful:  

• Can the proxy-informed model preserve instrumental-period variance?  

• Are low-frequency hydrological statistics more extreme or better defined in the 

proxy-informed model? This is contingent on the fidelity of the proxy low-frequency 

signal.   

• Is parameter uncertainty reduced in the proxy-informed model? This is contingent on 

the stochastic modelling framework used.  

 

When comparing proxy-informed and standard stochastic models, it is also crucial to compare 

synthetic timeseries of equal-length. In this study, both short-term and extended synthetic 

timeseries were examined. Comparing extended timeseries is an important and often 

overlooked part of model evaluation (and analysis of paleoclimate records in general). This 

accounts for the increased likelihood of longer timeseries having larger extremes, purely due 

to chance (e.g., the maximum of 1,000 draws from a standard normal distribution will be 

greater than the maximum of 100 draws). Perhaps instrumental and paleoclimate timeseries are 

statistically consistent, but the longer paleoclimate record coincidentally contains larger 

extremes?  

  

Issues of model evaluation aside, the proposed modelling framework is flexible and can be 

extended. The key concept is using additional climate data to inform stochastic model 

calibration. This can be applied to any stochastic model, parameter, or calibration method. 

Furthermore, different proxy types could be used to calibrate different stochastic model 

parameters or used as stochastic model covariates. This would reproduce non-stationarities 

contained in the covariate proxy record. These potential applications highlight how the 

modelling framework can leverage the respective strengths of different proxies (i.e., unbiased 

persistence signal in ice cores, catchment-scale non-stationarities in tree-rings) without relying 

on predictive skill-based selection criteria. Such criteria can overlook lower skill records that 

still contain useful, and different, information about hydroclimatic variability (e.g., ice cores).  
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The general flexibility of the Bayesian framework means that additional case studies using 

different proxies and catchments can be conducted quickly. Will other proxy records and 

catchments produce similar results? Such replications are needed to better understand if and 

how centennial-scale climate variability can impact water security.  

 

6.10 Conclusion 
In this study, a Bayesian framework for calibrating a stochastic rainfall model using 

palaeoclimate proxy data was presented. The framework uses proxy data to define rainfall 

persistence priors. The use of proxy-informed priors serves two purposes: (1) it constrains 

persistence parameter uncertainty and (2) it incorporates proxy centennial-scale variability that 

is missing in the short instrumental rainfall record. This results in stochastic rainfall simulations 

that incorporate realistic centennial-scale climate variability. The framework also explicitly 

preserves rainfall coefficient of variation, which in turn results in rainfall outputs that can be 

used in operational water management. Finally, the framework simulates more severe droughts 

than other existing proxy-informed stochastic modelling methods.  
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Chapter 7. Final discussion  
Before discussing the climate risk and water management implications of this thesis, it is 

important to discuss the assumptions made when using palaeoclimate proxy records to infer 

historic climate variability and climate risk.  

  

Underpinning this thesis, and all palaeoclimatology, is an assumption that the proxy-climate 

relationship is stationary and can be inferred from the instrumental-period. This assumption is 

both necessary and potentially flawed.  

 

When considering limitations with this assumption, note that numerous factors influence proxy 

formation and properties. The relative influence of these different factors may change between 

instrumental and pre-instrumental periods (e.g. forest stand dynamics might mean that some 

periods are more conducive to tree growth than others - Cook, 1985). This means that the 

statistical model calibrated from the instrumental period may not be wholly suitable for some 

pre-instrumental periods (D’Arrigo et al., 2008). In contrast to local proxies, remote proxy 

reconstructions assume that the atmospheric processes linking the proxy with the target climate 

variable remain relatively unchanged in the pre-instrumental period. This is hard to validate 

and may not be likely – remote proxies may be skilful predictors of climate for some periods 

and not others (Kiem et al., 2020).  

 

For standard statistical reconstructions, assuming a stationary proxy-climate relationship can 

be particularly limiting. However, even reconstruction methods which use, in part, physically 

based climate models require proxy forward models (through a process of data assimilation) 

(Dee et al., 2016; Steiger et al., 2017, 2014). The parameters of these proxy forward models 

are informed by instrumental-period statistical relationships (Tolwinski-Ward et al., 2011). No 

matter the method, look close enough and you will see that, at some point, an assumption is 

made that pre-instrumental proxy-climate relationships are like those observed in the 

instrumental period.  

 

In a sense, this assumption is ‘the worm at the core’ of paleoclimatology. It is easily hidden, 

hard to remove, and somewhat unsavoury.  
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Calling this assumption the ‘worm at the core’1 of paleoclimatology may be considered unfair. 

After all, won’t any scientific field based on passive observation and measurement, as opposed 

to controlled experiments, also have a ‘worm at the core’? Perhaps, but the ‘worm at the core’ 

of paleoclimatology is particularly pernicious when one considers the implications of proxy 

variability. More specifically, that pre-instrumental climate, and by extension future climate, 

might be substantially different to instrumental climate.  

 

Various reconstruction studies have discussed pre-instrumental climate in terms of 

‘megadroughts’ (Cook et al., 2022; Helama et al., 2009; Routson et al., 2011; Stevenson et al., 

2022). Naturally, a megadrought invokes a concern for water security.  

 

Megadroughts have quite severe social and economic impacts (Fernández et al., 2023; Muñoz 

et al., 2020), but adapting a water supply system to mitigate the risks posed by megadrought 

also has social and economic impacts (Gober et al., 2016). Therefore, any water security 

concerns about megadrought should be viewed with respect to the underlying assumption made 

when producing the reconstruction – the ‘worm at the core’.   

 

When examining pre-instrumental megadroughts, and paleoclimate reconstructions in general, 

note that a key implication of the ‘worm at the core’ is that the reconstruction skill remains 

constant across instrumental and pre-instrumental periods. Most reconstructions have an R2 

between 0.3 and 0.6, meaning they explain 30-60% of the variability in the target climate 

variable. What about the remaining 40-70%? Quantifying this unexplained variance is crucial 

for accurately inferring climate risk and managing water.  

 

Linear reconstruction methods assume that this unexplained variance has a mean of zero and 

is independent and identically distributed. This means that, for an R2 between 0.3 and 0.6, 

around half of the reconstruction is assumed white noise. Is this a reasonable assumption? What 

if, during the megadrought, this unexplained variance has a structure that counter acts the 

megadrought? This cannot be answered! So, considering this limitation, is it reasonable to 

 

1 The phrase ‘worm at the core’ was taken from a book describing the psychological sub-field called Terror 
Management Theory (Solomon et al., 2015)  
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adapt a water supply system based on the megadroughts implied by palaeoclimate 

reconstructions?  

 

Despite the ‘worm at the core’, there are physical explanations, and corresponding evidence 

from different proxy types, indicating that climate varies at centennial and millennial 

timescales (i.e. megadroughts are possible). From a water security perspective, such variability 

is concerning because the statistical models used to infer climate risk (e.g. stochastic models), 

and the instrumental data these models were calibrated to, cannot account for centennial and 

millennial scale variability (Chapter 3).  

 

Therefore, irrespective of proxy limitations, there was a clear need to use palaeoclimate 

information to re-evaluate and update the statistical models/assumptions used to infer climate 

risk in water management. This was the key motivation of this thesis. 

 

When exploring how to use palaeoclimate data in climate risk assessment and water 

management, throughout this thesis we have been mindful of the ‘worm at the core’ of 

paleoclimatology. Instead of using a remote proxy to predict catchment rainfall, we assessed 

the fidelity of remote proxy persistence (Chapter 2), the stationarity of that persistence (Chapter 

5), and then used proxy persistence to inform the calibration of a catchment-scale stochastic 

rainfall model capable of reproducing proxy variability (Chapter 3 and Chapter 6). In doing so, 

we sidestepped the limited skill of remote proxies and produced stochastic rainfall data with a 

low-frequency signal that, based on Chapter 2 and Chapter 4, we have insufficient evidence to 

say is unrealistic.  

 

Aside from the modelling framework presented in Chapter 6, examining proxy records (as 

opposed to reconstructions) also lead to additional insights on the nature of climate risk and 

the limitations with using stochastic models to infer climate risk. For example, Chapter 5 

examined the stationarity assumption underpinning ‘traditional’ water management. Marginal 

evidence against stationarity was found, which raises questions as to if and how historic 

non-stationarity should be considered in climate risk modelling.  

 

From our perspective, the key issue facing climate risk modelling is not removing (or hiding) 

all stationarity assumptions. Rather, when assuming a particular parameter or relationship is 

stationary, how wrong are we prepared to be? This is a somewhat subjective judgement, which 
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depends on (a) the modelling task, (b) whether non-stationary models are demonstrably better 

than a stationary model, and (c) the consequences of wrongly assuming stationarity.   

 

From a climate risk perspective, the consequences of wrongly assuming stationarity are, 

perhaps, most important. Chapter 5 provided evidence that, under historic climate variability, 

(a) stochastic model mean and standard deviation posteriors are similar at centennial 

timescales, but not multi-centennial and millennial timescales and (b) stochastic model 

persistence posteriors are similar across centennial, multi-centennial, and millennial 

timescales. This means that under historic climate variability and over a 100-year planning 

horizon, assuming stationarity can still produce reasonable climate risk estimates.  

 

Evidence for stationary persistence, combined with the large uncertainty in persistence inferred 

from instrumental records, motivated the method presented in Chapter 6, which aimed to 

reduce the parameter uncertainty in stochastic model persistence. Although the method reduced 

parameter uncertainty, it also produced larger statistical uncertainty for various hydrological 

statistics when compared with a standard calibration method. The larger statistical uncertainty, 

also referred to as ‘stochastic’ or ‘aleatory’ uncertainty, arose due to the incorporation of proxy 

centennial-scale climate variability in stochastic model outputs. This uncertainty is 

unavoidable and must be managed. Centennial-scale variability, aleatory uncertainty, and 

parameter uncertainty means that water supply systems must be robust under a future range of 

drought risk that is irreducibly ‘wide’, hence the term ‘wide uncertainty’.   

 

‘Wide’ uncertainty stems from parameter uncertainty, aleatory uncertainty, and centennial-

scale climate variability – however, managing water under future climate risk must also 

contend with ‘deep’ uncertainty under anthropogenic climate change (Hallegatte et al., 2012; 

Kwakkel et al., 2016a). Deep uncertainty describes how we cannot reasonably assign 

probabilities to future climate risk factors, such as future socio-economic development and 

associated greenhouse gas emissions or land use changes (Lempert et al., 2006).  

 

‘Wide and deep’ uncertainty poses challenges to the traditional engineering approaches of 

inferring climate risk, then designing systems to mitigate said risk (i.e. ‘predict then act’ 

approaches). For example, a water supply system may have been designed to mitigate a 

1-in-10,000-year drought. Typically, this drought was defined using a single stochastic model 

parameter set derived from an instrumental record (meaning parameter uncertainty and 
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centennial-scale variability was not considered). When updating system infrastructure or rules, 

a water manager may want to calculate a 1-in-10,000-year drought under ‘wide and deep’ 

uncertainty. However, what does a 1-in-10,000-year drought even look like under 

centennial-scale climate variability, non-stationarity, and deep uncertainty? This is hard to 

define using conventional statistical methods (Read and Vogel, 2015). Instead, over a particular 

planning horizon, it may be preferrable to look at system-specific risks of failure under a wide 

variety of scenarios (Borgomeo et al., 2018; Serinaldi, 2015).      

 

There are numerous risk management paradigms that examine system-specific risks and 

vulnerability, all with common themes of ‘bottom-up’ and ‘scenario-neutral’ risk assessments 

(Ben-Haim, 2006; Culley et al., 2016; Hall et al., 2012; Lempert et al., 2006). These paradigms 

were originally developed to manage water under ‘deep’ uncertainty – naturally, they can be 

applied to ‘wide and deep’ uncertainty. The overarching philosophy of these paradigms is to 

‘stress-test’ the system under a wide variety of plausible climate scenarios, identify system 

vulnerabilities under these scenarios, then develop operational rules and infrastructure whereby 

(a) system performance is insensitive to climate scenario (i.e. are ‘robust’) (Shortridge et al., 

2017; Stanton and Roelich, 2021) or (b) the system is adapted pursuant to some decision 

threshold being crossed (Haasnoot et al., 2020, 2013).  

 

When considering water management under ‘wide and deep’ uncertainty, results from Chapter 

6 highlight potential difficulties with achieving system robustness under the long-term baseline 

risk posed by centennial-scale variability. For a high demand scenario, a ‘robust’ reservoir may 

require hundreds of years of storage! Such storage is clearly infeasible.  

 

Instead of designing a system that is robust under centennial-scale variability, under ‘wide’ 

uncertainty it may be preferable to monitor climate, re-condition risk estimates based on recent 

observations, and, if necessary, adapt the system so it satisfices some management goals over 

a planning horizon. This monitor, re-condition, and adapt approach is aligned with the 

philosophies of info-gap decision theory and dynamic adaptive policy pathways (Ben-Haim, 

2010; Haasnoot et al., 2013). 

 

Although scenario-neutral, bottom-up, info-gap, and dynamic adaptation approaches are useful 

frameworks for understanding and managing risk under ‘wide and deep’ uncertainty, key 

questions related to these approaches remain. Four questions are listed below: 
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1. How should you select the scenarios when stress testing a system or identifying trigger 

points?  

Despite being described as ‘scenario neutral’, scenario selection influences which system 

adaptations are considered robust (Quinn et al., 2020). For a truly ‘scenario neutral’ framework, 

system robustness should not be overly sensitive to scenario selection. However, is scenario 

neutrality even possible and, if so, how do you achieve it under ‘wide and deep’ uncertainty? 

 

2. When monitoring decision thresholds using ‘signposts’, how do you know that a 

particular signpost has been crossed?  

Under ‘wide’ uncertainty, this is a particularly difficult question to answer. Climate naturally 

fluctuates and trends over centennial-scales – a potential signpost should be relatively robust 

to these fluctuations (Haasnoot et al., 2018). Identifying signposts with a low signal-to-noise 

ratio is important but, under ‘wide’ uncertainty, can we expect such a signpost? Further 

research is needed that considers how making an adaptation decision based on a signpost will 

depend on (a) the relative consequences of a false alarm versus a 'miss' and (b) how palatable 

these relative consequences are (i.e. the ‘risk profile’ of the decision-maker). Instead of 

passively monitoring a signpost to inform decision-making, it may be preferable to couple the 

signpost with various decision-making risk profiles. These risk profiles are, in turn, informed 

by the socio-political context in which the adaptation decision is being made.  

 

3. How should the water system boundaries be defined during modelling and risk 

assessment?  

Westra and Zscheischler, 2023 refer to this issue as boundary critique (taken from systems 

engineering concepts). Boundary critique acknowledges that water supply systems do not exist 

or operate in isolation – they are embedded within broader social and economic systems 

(Falkenmark, 1977; Wang et al., 2023). Boundary critique is a process of identifying trade-offs 

between the need to consider (or not) these broader systems and the impossibility of modelling 

‘everything’ (Westra and Zscheischler, 2023). In essence, what level of model complexity is 

necessary for given objectives of a risk assessment, and how can this be identified? Global 

sensitivity analysis seems an ideal tool for boundary critique.  
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4. How might adaptation decisions made today, and the risk assessment/modelling 

methods informing these decisions, impact future adaptation decisions, and the risk 

assessment/modelling methods informing future decisions?  

There are various economic and socio-political factors that can dictate what modelling methods 

and adaptation options are permissible (Hurlimann and Dolnicar, 2010). These economic and 

socio-political factors are, in turn, influenced by stakeholder engagement during model 

development and adaptation scoping (Ross et al., 2014). This mutual influence will determine 

‘institutional capacity for adaptation’, a concept often discussed in the development studies 

literature (Domorenok et al., 2021; Mortreux and Barnett, 2017; Smit and Wandel, 2006). A 

key, and often overlooked, outcome of this mutual influence is that a legacy of prior stakeholder 

engagements and modelling methods will influence policy and modelling updates (Lim et al., 

2023). In short, institutional capacity for adaptation has a ‘memory’ that can either limit or 

enhance the risk assessment and modelling process (Barnett et al., 2015). However, 

institutional capacity for adaptation is, typically, only implicitly considered during the initial 

scoping of system risks and potential adaptations. Furthermore, sociological analyses of 

institutional capacity tend to overlook the overarching role of risk assessment and modelling 

in defining and building said capacity. Therefore, explicit consideration of institutional 

capacity before, during, and after the risk assessment and modelling process may be needed to 

ensure institutions can proactively manage and adapt to risks posed by ‘wide and deep’ 

uncertainty. This is a specific example of what Westra and Zscheischler (2023) call ‘embedding 

second-order learning within risk assessments’ – in essence, using the concept of institutional 

capacity to frame and guide second-order learning during the risk assessment and modelling 

process.  

 

Questions 3 and 4 stem from the inherent complexity of coupled dynamic systems, highlighting 

that decision-making and climate risk assessment exist within and interact with socio-political 

systems. The nature of system complexity means that (a) future system trajectories are 

influenced by innocuous, seemingly random perturbations to the current state of the system; 

(b) there are various, potentially unknown feedbacks and interactions between coupled 

sub-systems (e.g. the coupling of socio-political decision making systems with physical 

environmental systems); and (c) risk can compound, cascade, and emerge due to the 

interactions between sub-systems (Lorenz, 1969; Lux, 1998; Simpson et al., 2021).  
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Uncertainties arising from system complexity are, in our opinion, best described as ‘deep’. 

However, ‘deep’ uncertainty exists on a spectrum from ‘clear’ to ‘murky’ that describes the 

fidelity with which the deeply uncertain feature can be described. For example, future land use 

changes, although deeply uncertain, can be described. Moreover, future rainfall changes, 

although deeply uncertain, can also be described within some user-defined upper and lower 

bound (Brown et al., 2012; Mortazavi-Naeini et al., 2015; Turner et al., 2014). Therefore, both 

future rainfall and land use changes are deeply uncertain, however, they can be defined clearly. 

In contrast, the deep uncertainty associated with complex systems, particularly those that 

include socio-political sub-systems, is inherently ‘murky’.   

 

‘Murky’ uncertainty describes the deeply uncertain features and interactions that are either (a) 

poorly understood or (b) hard to objectively define. Poorly understood features include, but are 

not limited to, those arising from system complexity. Hard to objectively define features 

include, but are not limited to, social values and goals.  

 

An example of a poorly understood system feature arising from system complexity is the 

so-called ‘Irrigation Efficiency Paradox’. This paradox refers to empirical evidence that 

increasing irrigation efficiency at a farm-scale does not reduce water consumption at the 

basin-scale (Burt et al., 1997). Grafton et al., 2018 proposed two causes of the paradox: (1) 

drip irrigation leading to a reduction in recoverable, reusable, return flows and (2) water 

savings being offset by the expansion of irrigated areas.  

 

Now, consider a risk assessment exercise that, in part, wants to consider the impact of 

increasing irrigation efficiency on overall river system outcomes. This assessment will likely 

involve modelling of the river system. Empirical evidence indicates that, in a realistic model, 

an increase in farm-scale irrigation efficiency will not reduce basin-scale consumption (the 

Irrigation Efficiency Paradox). However, there has been limited research on modelling the 

Irrigation Efficiency Paradox. Some research proposes more detailed surface water-ground 

water modelling to represent recoverable and non-recoverable return flows (Xiong et al., 2021). 

Other research proposes incorporating the changing behaviour of irrigators within a coupled 

socio-environmental model (Ilyas et al., 2021). Crucially, further research is certain! So, what 

are we to do when there is reasonable evidence that a process influences system behaviour and 

risk, but there is limited understanding or agreement on how to model this process? The 
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subsequent modelling choice, and the sensitivity of the model results and inferred risk to this 

choice, gives rise to a very ‘murky’ uncertainty.    

 

In contrast to poorly understood features, which may be better understood after further 

research, there are also deeply uncertain features that are inherently hard to define. For 

example, a suitable water system adaptation may depend on satisficing some social goals, such 

as economic ‘fairness’. Social goals are hard to define, let alone model and optimise. Attempts 

to define, model, and optimise some heuristic social goal will require various trade-offs 

between multiple stakeholder values, data available to measure a potential goal heuristic, and 

the need for conventional system modelling and optimisation tools to represent goals clearly 

(Wu et al., 2023). These trade-offs will influence model results. However, the corresponding 

sensitivity and uncertainty is impossible to define – giving rise to ‘murky’ uncertainty.   

 

For a climate risk assessment, modelling a system subject to ‘murky’ uncertainty requires two 

subjective choices. First, we must choose the system features and interactions to model – 

perhaps through a process of sensitivity analysis and boundary critique, or perhaps based on 

the expertise and capabilities of the modeller. Second, we must define hard to define features 

– perhaps through a process of stakeholder engagement, or perhaps based on data and 

modelling constraints. Regardless of process, the nature and subjectivity of both choices means 

that (a) no model set-up can be considered ‘optimal’ and (b) model goals are shaped by 

potentially conflicting stakeholder values. This can make model development highly contested. 

Crucially, the modelling choices made under ‘murky’ uncertainty will significantly influence 

model outputs and, by extension, outcomes.    

 

The concept of ‘murky’ uncertainty invokes similar issues to that of a ‘wicked’ problem - but 

what is a ‘wicked’ problem? A ‘wicked’ problem is one involving multiple stakeholders and 

decision-makers with conflicting interests and values, whereby the problem definition is 

contested and ill-formed (Rittel and Webber, 1973). The inability to clearly and objectively 

define the problem, in turn, makes potential solutions to ‘wicked’ problems highly dependent 

on the problem heuristic (Kwakkel et al., 2016b). In a way, ‘wickedness’ and ‘wide, deep and 

murky uncertainty’ are two sides of the same coin, ‘wickedness’ being described through the 

lens of problem framing, ‘wide, deep, and murky’ uncertainty being described through the lens 

of systems modelling.   
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In climate risk assessment and water system modelling, considering ‘wickedness’ and ‘wide, 

deep, and murky’ uncertainty is not new. Nor is considering system complexity. Therefore, we 

find ‘wide, deep, and murky’ uncertainty useful for framing and communicating climate risk 

assessment and model development. Clearly framing these concepts to both technical and 

non-technical stakeholders is important, especially when considering the pivotal role of risk 

assessment and modelling in solving ‘wicked’ problems (Table 7-1 and Figure 7-1).  

 
Table 7-1: Technical and 'layman' framing of 'wide, deep, and murky uncertainty' 

 Technical explanation Non-technical explanation 
Wide uncertainty Long-term climate 

variability, aleatory 
uncertainty, and parameter 
uncertainty means that the 
space of future climate risk 
is irreducibly ‘wide’.   

A wide range of things can 
happen, purely due to the 
somewhat random nature of 
climate.  

Deep uncertainty We cannot reasonably assign 
probabilities to future 
climate risk factors, such as 
future socio-economic 
development and associated 
greenhouse gas emissions or 
land use changes 

Many things could happen, 
and we don’t know which of 
these are more or less likely.  

Murky uncertainty a. There is reasonable 
evidence that certain 
processes influences system 
behaviour and risk, but there 
is limited understanding or 
agreement on how to model 
these processes. 
b. Social values and goals 
will shape how we assess 
and respond to risk, but these 
values and goals are hard to 
define.  
 

There are things we don’t 
know and there are things 
we can’t define objectively.  
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Figure 7-1: Schematic of ‘wide, deep, and murky’ uncertainty within the context of a ‘wicked’ problem. Additional 

descriptors of ‘wide’ uncertainty have been added to contextualise the key findings from this thesis.  

 

This framing of ‘wide, deep, and murky’ uncertainty can also be used to contextualise the key 

findings of this thesis. Viewing these studies together leads to an improved understanding of 

what ‘wide’ uncertainty is and how it can be modelled in climate risk assessments. Within a 

‘wide’ uncertainty context, the key findings from this thesis are: 

 

1. Ice core records contain relatively unbiased signals of long-term climate variability. This 

means that ice cores, which are much longer than instrumental hydrological 

measurements, can be used to understand, constrain, and model uncertainty arising from 

long-term, centennial-scale climate variability.  

2. A stochastic model calibrated to instrumental measurements cannot simulate long-term, 

centennial-scale climate variability. This means that traditional stochastic modelling 

approaches are unable to simulate risk arising from aleatory uncertainty and 

centennial-scale climate variability.  

3. Stochastic model mean and standard deviation are likely (a) non-stationary at 

multi-centennial and millennial timescales and (b) stationary at centennial timescales. 

4. Stochastic model persistence is likely stationary over centennial, multi-centennial, and 

millennial timescales.  
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Chapter 6 then ties these four key findings together and presents a stochastic modelling 

framework that incorporates the three key sources of ‘wide’ uncertainty in climate risk 

estimation.  

 

These studies improve understanding of ‘wide’ uncertainty in climate risk. This is just one 

component of the various sources of uncertainty to account for when using risk assessment and 

modelling to solve ‘wicked’ problems. Further research is needed to better understand and 

account for these sources of uncertainty. Some broader, philosophical research questions 

related to these sources of uncertainty were discussed earlier. However, there are also more 

immediate, follow-up research tasks that can be conducted relatively quickly. These include: 

 

• Stochastically modelling multiple Antarctic ice cores with a common persistence 

signal.  

This would involve calibrating an ARMA(1,1) model to multiple, extended ice core records 

within a Hierarchical modelling framework. The persistence parameters would be drawn from 

an underlying hyper-distribution. The calibrated hyper-distribution will, hopefully, contain a 

robust signal of regional persistence. If successful, the calibrated hyper-distribution can be used 

in a similar manner to the proxy-prior presented in the Empirical Bayes framework. This means 

ice core information can be used across the entire mid-latitude Southern Hemisphere.  

 

• Incorporating ice core persistence within scenario-neutral, bottom-up stochastic 

modelling approaches.  

These approaches fall into two broad categories: (1) perturbing stochastic model parameters 

based on potential climate changes(Guo et al., 2018; McInerney et al., 2023) and (2) using 

climate data, such as temperature, as a covariate to simulate non-stationarity (Kiem et al., 

2021). Both approaches need realistic representations of hydroclimate persistence, which can 

be derived from ice cores using the methods presented in this thesis. This is particularly 

important, given (a) the influence of persistence on water system performance (McMahon et 

al., 2007a; Vogel and Bolognese, 1995) and (b) that climate model simulations underestimate 

regional persistence (Henley et al., 2017; Rocheta et al., 2014).  
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• Evaluating if water system performance and potential adaptation options are sensitive 

to using either ‘static baseline’ climate inputs or conditional, potentially trending, 

climate inputs.   

There is a key difference between the parameter perturbation approach and the non-stationary, 

covariate approach used for scenario-neutral, bottom-up stochastic modelling. The perturbation 

approach produces ‘static’ timeseries with a stationary long-term mean.  The covariate 

approach can produce transient, trending timeseries (Kiem et al., 2021). Different adaptation 

approaches may favour static or trending timeseries (Haasnoot et al., 2015). However, it is 

possible to consider both. Such an important feature of a climate timeseries may influence the 

resultant climate risk and the robustness of different adaptations (e.g. likely time of failure over 

the planning horizon - Henley et al. (2013)). Identifying (or not) this sensitivity will guide how 

stochastic models are used to inform decision making under ‘wide, deep, and murky’ 

uncertainty.  

 

These research ideas reflect immediate, practical follow-up work stemming from this thesis. 

There is a bigger question underpinning these technical proposals – how can we solve ‘wicked’ 

problems under ‘wide, deep, and murky’ uncertainty?  

 

Solving ‘wicked’ problems under ‘wide, deep, and murky’ uncertainty is the defining challenge 

of future water management. Doing so will require, among other things, modelling tools to 

explore the space of future climate risk. This thesis has, hopefully, improved our understanding 

of ‘wide’ uncertainty and demonstrated how it can be modelled statistically.
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Chapter 9. Appendices 
 

9.1 Chapter 3 Appendix 
9.1.1 Residual diagnostics  

 

 
Figure 9-1: Summary of residual diagnostics for the ARFIMA(0,D,0), ARFIMA(0,D,0), and ARMA(1,1) models. 

The proportion of models with either normal and independent and identically distributed residuals (Normal IID); 

normal and autocorrelated residuals (AC); non-normal and independent residuals (NN); and non-normal and 

autocorrelated residuals (NN-AC) are shown. “Full record” models were used for Experiment 3, “Instrumental” 

models were used for Experiments 1 and 2. Normality was evaluated using a Shapiro-Wilks test and 

autocorrelation was evaluated using a Ljung-Box test.  

 

9.1.2 Experiment 3 with Na+ records removed  
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Figure 9-2: Same as Figure 3-6, but only ice core accumulation and tree-ring results are presented 

 

9.2 Chapter 4 Appendix  
9.2.1 Approximate likelihood function for skewed data 

Bayesian inference requires estimation of parameter likelihoods; for both the ARFIMA(0,D,0) 

and ARMA(1,1) models, the likelihood is calculated assuming the data is normally distributed. 

However, hydroclimatic data (and the proxy records examined in this thesis) typically have 

skewed marginal distributions and a finite lower bound of zero (i.e., are non-normal). In order 

to remove this skew prior to model calibration, a Box-Cox transformation was used (Box and 

Cox, 1964). Although this transformation can distort a timeseries’ autocovariance function 

(Montanari et al., 1997), it has been shown to (a) produce residuals that are normally distributed 

(if a model is fitted in transformed space); and (b) reproduce the skew of the timeseries 

marginal distribution (after back-transformation) (Srikanthan and McMahon, 2001). Therefore, 

this transformation is often used in operational water management. For a timeseries y, the 

Box-Cox transformation that produces the transformed timeseries z using the parameter 𝝺 in 

the following equation:  

 

 
𝑖𝑓 𝜆 ≠ 0: 𝑧𝑡  =  

𝑦𝜆
𝑡

− 1

𝜆
 

𝑖𝑓 𝜆 =  0: 𝑧𝑡  =  𝑙𝑜𝑔(𝑦𝑡) 
Equation 9-1 
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Although it is useful for removing skew, the Box-Cox transformation complicates inferring the 

stochastic model posteriors via MCMC methods. This is because the transformation introduces 

a strong dependence between potential 𝝺 and 𝝁/𝞂 parameters, which prevents proper 

exploration of the posterior space (Thyer et al., 2002). To reduce this dependence when 

calculating the likelihood of a proposed parameter set, first order approximations of 𝝁/𝞂 in the 

Box-Cox transformed space can be used. Thyer et al. (2002) derived these approximations, 

with the transformed mean 𝝁z being expressed in terms of the sample mean 𝝁y and 𝝺: 

 

 
𝑖𝑓 𝜆 ≠  0: 𝜇𝑧 =  

𝜇𝜆
𝑦  −  1

𝜆
 

𝑖𝑓 𝜆 =  0: 𝜇𝑧 =  𝑙𝑜𝑔(𝜇𝑦) 
Equation 9-2 

 

The first order approximation of the transformed variance 𝞂2
z was derived in terms of the 

sample mean  𝝁y; sample variance s2
y; and  𝝺, giving: 

 

 𝜎𝑧
2  =  𝑚𝑦

2(𝜆−1)𝑠𝑦
2 Equation 9-3 

 

Calculation of the likelihood function requires 𝞂2
z  to be expressed in terms of the residual 

variance 𝞂2
ε. For the ARMA(1,1) model, this is:  

 

 
𝜎𝑧

2  =  
(1 +  2𝜙𝜃 + 𝜃2)𝜎𝜖

2

1 − 𝜙2
 

Equation 9-4 

 

Inserting Equation 9-3 into Equation 9-4 then rearranging, we obtain a first order 

approximation of the residual variance 𝞂2
ε in terms of the sample mean 𝝁y;  sample variance 

s2
y; the 𝝺 parameter; and the ARMA(1,1) 𝞍 and 𝝷 parameters:  

 

 
𝜎𝜖

2 =  
𝜇𝑦

2(𝜆−1)𝑠𝑦
2(1 − 𝜙2)

(1 +  2𝜙𝜃 +  𝜃2)
 

Equation 9-5 

 

For the ARFIMA(0,D,0) model, 𝞂2
z can be expressed in terms of residual variance 𝞂2

ε  and the 

D parameter as:  
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σz

2  =
σϵ

2 Γ(1 − 2D)

[Γ(1 − D)]2
  

Equation 9-6 

 

And, as with the ARMA(1,1) model, inserting Equation 9-5 into Equation 9-6 and rearranging, 

we obtain:  

 

 
σϵ

2  =  
μy

2(λ−1) sy
2 [Γ(1 − D)]2

Γ(1 − 2D)
 

Equation 9-7 

 

When calculating the likelihood of a proposed parameter set, an additional constraint 

introduced by the Box-Cox transformation is that it can only be applied to positive data. To 

ensure a successful back-transformation to the original timeseries scale, this means that the 

transformed data have upper/lower bounds that are a function of 𝝺 (also derived by Thyer et al. 

(2000)) and follow a Truncated Normal distribution such that:  

 

 zt | zt−1, ϵt−1 ~ TN(zt, σϵ
2, lb, ub)  for the ARMA(1,1) model and 

zt | ϵt−1,...,1 ~ TN(zt, σϵ
2, lb, ub) for the ARFIMA(0,D,0) model 

Equation 9-8 

 

 

 

Where žt is the conditional mean of the transformed timeseries and lb and ub are respective 

lower and upper bounds such that:  

 

 
𝑖𝑓 𝜆 >  0: 𝑙𝑏 =  

−1

𝜆
 ;  𝑢𝑏 =  ∞ 

𝑖𝑓 𝜆 <  0: 𝑙𝑏 =  −∞ ;  𝑢𝑏 =  
−1

𝜆
 

Equation 9-9 

 

These upper and lower bounds are derived to satisfy the constraint zt𝝀 + 1 > 0   

 

Considering these approximations/constraints, the likelihood of a proposed parameter set θp is:  

 

 
P(θp| y)  ∝  ∏

n

t=2

yt
λ−1 TN(zt, σϵ

2, lb, ub)  
Equation 9-10 
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Note that the yt𝜆
-1 term leading the Truncated Normal density is a Jacobian adjustment that 

accounts for any distortions in the posterior density introduced by the non-linear Box-Cox 

transformation. 

 

9.2.2 Selection of prior distributions  

For both ARMA and ARFIMA models, non-informative priors were used (Frost et al., 2007). 

 

 λ ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2, 2) 

𝜇𝑦~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑦, 𝜎𝑦) 

𝜎𝑦~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎(1, 𝜎𝑦) 

Equation 9-11 

 

 

Where 𝜇𝑦 and 𝜎𝑦 are the sample mean and standard deviation respectively. For the persistence 

parameters, both models assumed uniform persistence priors. For the ARMA(1,1) model, these 

were: 

 

 ϕ ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1, 1) 

θ ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1, 1) 
Equation 9-12 

 

For the ARFIMA(0,D,0) model, these were: 

 

 D ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5, 0.5) Equation 9-13 

 

9.3 Chapter 5 Appendix  
9.3.1 CIMSS model likelihood 

Respective IPO ‘wet’ and ‘dry’ phases (i.e., IPO negative and IPO neutral-positive) were 

assumed to follow a gamma distribution. 

 𝐼𝑃𝑂 𝑤𝑒𝑡 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼𝑤, 𝛽𝑤) 

𝐼𝑃𝑂 𝑑𝑟𝑦 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼𝑑, 𝛽𝑑) 
Equation 9-14 
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An AR(1) model was then calibrated to respective wet/dry phases in the instrumental rainfall 

record. These phases have, separate mean, standard deviation, and Box-Cox 𝝺 parameters 

identified for each phase, but share the same persistence parameter    This meant that, for IPO 

state j at time t, the transformed annual rainfall timeseries z at time t can be expressed as:  

 

 𝑧𝑗𝑡 =  𝜇𝑗  +  𝜙 ∗ (𝑧𝑗(𝑡−1)  −  𝜇𝑗(𝑡−1))  + 𝜖𝑗𝑡 Equation 9-15 

 

 𝜖𝑗𝑡  ~ 𝑁(0, 𝜎𝑗) Equation 9-16 

 

Where  

 
𝑖𝑓 𝜆𝑗 ≠ 0: 𝑧𝑗𝑡 =  

𝑦𝑡
𝜆𝑗 − 1

𝜆𝑗
 

𝑖𝑓 𝜆𝑗 =  0: 𝑧𝑗𝑡  =  𝑙𝑜𝑔(𝑦𝑡) 

Equation 9-17 

 

As with the proposed model, the CIMSS framework allows Bayesian calibration and inference 

of posteriors. The likelihood of the CIMSS framework used in this study can be expressed as:  

 

𝑃(𝜃𝑟𝑢𝑛, 𝜃𝑟𝑎𝑖𝑛|𝑌𝑖𝑝𝑜, 𝑌𝑟𝑎𝑖𝑛)  =  𝑃(𝜃𝑟𝑢𝑛|𝑌𝑖𝑝𝑜) 𝑃(𝜃𝑟𝑎𝑖𝑛| 𝑌𝑟𝑎𝑖𝑛) 

 

Equation 9-18 

 𝑃(𝜃𝑟𝑢𝑛|𝑌𝑖𝑝𝑜) 𝑃(𝜃𝑟𝑎𝑖𝑛| 𝑌𝑟𝑎𝑖𝑛)  

∝  𝑃(𝑌𝑖𝑝𝑜| 𝛼𝑤, 𝛼𝑑, 𝛽𝑤, 𝛽𝑑) 𝑃(𝑌𝑟𝑎𝑖𝑛|𝜇𝑤, 𝜇𝑑 , 𝜎𝑤 , 𝜎𝑑 . 𝜆𝑤, 𝜆𝑑 , 𝜙) 

Equation 9-19 

 

Where w and d subscripts refer to parameters identified for wet/dry IPO phases respectively. 

Prior distributions for each parameter were selected following Frost et al. (2007) and posteriors 

inferred using the NUTS algorithm.   

 

9.3.2 CIMSS model validation  

Figure 9-3 demonstrates that the gamma distribution is an appropriate choice for respective 

IPO negative and IPO neutral-positive phases, Figure 9-4 demonstrates that CIMSS model 

residuals were independent and normally distributed, and Figure 9-5 demonstrates that the 

CIMSS model was able to reproduce key Williams River hydrological statistics.  
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Figure 9-3: Posterior of Gamma distribution fitted to IPO run-lengths. 

 

 
Figure 9-4: CIMSS residual diagnostics for different IPO phases. 
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Figure 9-5: CIMSS statistics validated against Williams River rainfall. 

 


